Menu Close

find-f-a-dx-1-ax-2-with-a-from-R-




Question Number 36818 by maxmathsup by imad last updated on 06/Jun/18
find f(a) = ∫     (dx/( (√(1−ax^2 ))))  with a from R .
$${find}\:{f}\left({a}\right)\:=\:\int\:\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }}\:\:{with}\:{a}\:{from}\:{R}\:. \\ $$
Commented by prof Abdo imad last updated on 06/Jun/18
case 1  a>0  changement (√a)x= sint give  f(a) = ∫     (1/(cost)) ((cost dt)/( (√a))) =(1/( (√a)))  arcsin((√a) x) +c  case 2  a<0  changement (√(−a))x=sh(t) give  f(a) = ∫   (1/(ch(t))) ((ch(t))/( (√(−a)))) = (1/( (√(−a)))) argsh((√(−a))x)  =(1/( (√(−a)))) ln{ x(√(−a))  +(√(1−ax^2 ))  ) +c .
$${case}\:\mathrm{1}\:\:{a}>\mathrm{0}\:\:{changement}\:\sqrt{{a}}{x}=\:{sint}\:{give} \\ $$$${f}\left({a}\right)\:=\:\int\:\:\:\:\:\frac{\mathrm{1}}{{cost}}\:\frac{{cost}\:{dt}}{\:\sqrt{{a}}}\:=\frac{\mathrm{1}}{\:\sqrt{{a}}}\:\:{arcsin}\left(\sqrt{{a}}\:{x}\right)\:+{c} \\ $$$${case}\:\mathrm{2}\:\:{a}<\mathrm{0}\:\:{changement}\:\sqrt{−{a}}{x}={sh}\left({t}\right)\:{give} \\ $$$${f}\left({a}\right)\:=\:\int\:\:\:\frac{\mathrm{1}}{{ch}\left({t}\right)}\:\frac{{ch}\left({t}\right)}{\:\sqrt{−{a}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{−{a}}}\:{argsh}\left(\sqrt{−{a}}{x}\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{−{a}}}\:{ln}\left\{\:{x}\sqrt{−{a}}\:\:+\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }\:\:\right)\:+{c}\:. \\ $$
Answered by MJS last updated on 06/Jun/18
∫(dx/( (√(1−ax^2 ))))=            [t=(√a)x → dx=(dt/( (√a)))]  =(1/( (√a)))∫(dt/( (√(1−t^2 ))))=(1/( (√a)))arcsin t=  ((√a)/a)arcsin (√a)x +C   { ((a>0     (1/( (√a)))arcsin (√a)x +C)),((a=0     x+C)),((a<0     (1/( (√(−a))))arcsinh (√(−a))x +C)) :}
$$\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{t}=\sqrt{{a}}{x}\:\rightarrow\:{dx}=\frac{{dt}}{\:\sqrt{{a}}}\right] \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{a}}}\int\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\:\sqrt{{a}}}\mathrm{arcsin}\:{t}= \\ $$$$\frac{\sqrt{{a}}}{{a}}\mathrm{arcsin}\:\sqrt{{a}}{x}\:+{C} \\ $$$$\begin{cases}{{a}>\mathrm{0}\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{{a}}}\mathrm{arcsin}\:\sqrt{{a}}{x}\:+{C}}\\{{a}=\mathrm{0}\:\:\:\:\:{x}+{C}}\\{{a}<\mathrm{0}\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{−{a}}}\mathrm{arcsinh}\:\sqrt{−{a}}{x}\:+{C}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *