Menu Close

find-f-a-dx-1-ax-2-with-a-from-R-




Question Number 36818 by maxmathsup by imad last updated on 06/Jun/18
find f(a) = ∫     (dx/( (√(1−ax^2 ))))  with a from R .
findf(a)=dx1ax2withafromR.
Commented by prof Abdo imad last updated on 06/Jun/18
case 1  a>0  changement (√a)x= sint give  f(a) = ∫     (1/(cost)) ((cost dt)/( (√a))) =(1/( (√a)))  arcsin((√a) x) +c  case 2  a<0  changement (√(−a))x=sh(t) give  f(a) = ∫   (1/(ch(t))) ((ch(t))/( (√(−a)))) = (1/( (√(−a)))) argsh((√(−a))x)  =(1/( (√(−a)))) ln{ x(√(−a))  +(√(1−ax^2 ))  ) +c .
case1a>0changementax=sintgivef(a)=1costcostdta=1aarcsin(ax)+ccase2a<0changementax=sh(t)givef(a)=1ch(t)ch(t)a=1aargsh(ax)=1aln{xa+1ax2)+c.
Answered by MJS last updated on 06/Jun/18
∫(dx/( (√(1−ax^2 ))))=            [t=(√a)x → dx=(dt/( (√a)))]  =(1/( (√a)))∫(dt/( (√(1−t^2 ))))=(1/( (√a)))arcsin t=  ((√a)/a)arcsin (√a)x +C   { ((a>0     (1/( (√a)))arcsin (√a)x +C)),((a=0     x+C)),((a<0     (1/( (√(−a))))arcsinh (√(−a))x +C)) :}
dx1ax2=[t=axdx=dta]=1adt1t2=1aarcsint=aaarcsinax+C{a>01aarcsinax+Ca=0x+Ca<01aarcsinhax+C

Leave a Reply

Your email address will not be published. Required fields are marked *