Menu Close

find-f-a-t-0-2pi-dx-a-t-sinx-2-calculate-0-2pi-sinx-a-tsinx-2-dx-3-calculate-0-2pi-dx-a-tsinx-2-




Question Number 43909 by abdo.msup.com last updated on 17/Sep/18
find f(a,t)=∫_0 ^(2π)    (dx/(a +t sinx))  2)calculate ∫_0 ^(2π)  ((sinx)/((a+tsinx)^2 ))dx  3)calculate ∫_0 ^(2π)   (dx/((a+tsinx)^2 )) .
findf(a,t)=02πdxa+tsinx2)calculate02πsinx(a+tsinx)2dx3)calculate02πdx(a+tsinx)2.
Answered by maxmathsup by imad last updated on 24/Sep/18
changement  e^(ix)  =z give f(a,t) = ∫_(∣z∣=1)    (1/(a+t ((z−z^(−1) )/(2i)))) (dz/(iz))  = ∫_(∣z∣=1)     ((2i)/(iz{2ia +t(z−z^(−1) )})) dz = ∫_(∣z∣=1)     (2/(2iaz +tz^2  −t))dz  let ϕ(z) = (2/(tz^2  +2iaz −t))dz  .poles of ϕ    Δ^′  = −a^2  +t^2  =t^2 −a^2   case 1        Δ^′ >0 ⇒z_1 =((−ia +(√(t^2 −a^2 )))/t)   and z_2 =((−ia−(√(t^2 −a^2 )))/t)  ∣z_1 ∣ −1 =(1/(∣t∣)) (√(a^2  +t^2 −a^2 ))=1 ⇒∣z_1 ∣>1 ( out of circle)  ∣z_2 ∣−1 = (1/(∣t∣))(√(a^2  +t^2 −a^2 ))=1 ⇒∣z_2 ∣>1 (out of circle) ⇒  ∫_(∣z∣)   ϕ(z)dz =0  case 2    Δ^′ <0 ⇒t^2 −a^2 <0 ⇒ Δ^′ =(i(√(a^2 −t^2 )))^2  ⇒z_1 =((−ia +i(√(a^2 −t^2 )))/t)  z_2 =((−ia −i(√(a^2 −t^2 )))/t)  ∣z_1 ∣−1 =  ((∣a−(√(a^2 −t^2 ))∣)/(∣t∣))    ∣z_2 ∣−1  =((∣a +(√(a^2 −t^2 ))∣)/(∣t∣))  if a>0  we get ∣z_1 ∣>1 and ∣z_2 ∣>1 ⇒ ∫_(∣z∣=1) ϕ(z)dz =0  if a<0  ∣z_1 ∣>1 and ∣z_2 ∣<1 ⇒ ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_2 )  but ϕ(z)= (2/(t(z−z_1 )(z−z_2 ))) ⇒ Res(ϕ,z_2 )= (2/(t(z_2 −z_1 ))) =(2/(t(((−2i(√(a^2 −t^2 )))/t))))  =((−1)/(i(√(a^2 −t^2 )))) ⇒∫_(∣z∣=1) ϕ(z)dz =2iπ (((−1))/(i(√(a^2  −t^2 )))) =((−2π)/( (√(a^2 −t^2 )))) =f(a,t)
changementeix=zgivef(a,t)=z∣=11a+tzz12idziz=z∣=12iiz{2ia+t(zz1)}dz=z∣=122iaz+tz2tdzletφ(z)=2tz2+2iaztdz.polesofφΔ=a2+t2=t2a2case1Δ>0z1=ia+t2a2tandz2=iat2a2tz11=1ta2+t2a2=1⇒∣z1∣>1(outofcircle)z21=1ta2+t2a2=1⇒∣z2∣>1(outofcircle)zφ(z)dz=0case2Δ<0t2a2<0Δ=(ia2t2)2z1=ia+ia2t2tz2=iaia2t2tz11=aa2t2tz21=a+a2t2tifa>0wegetz1∣>1andz2∣>1z∣=1φ(z)dz=0ifa<0z1∣>1andz2∣<1z∣=1φ(z)dz=2iπRes(φ,z2)butφ(z)=2t(zz1)(zz2)Res(φ,z2)=2t(z2z1)=2t(2ia2t2t)=1ia2t2z∣=1φ(z)dz=2iπ(1)ia2t2=2πa2t2=f(a,t)
Commented by maxmathsup by imad last updated on 24/Sep/18
2) we have f(a,t) = ∫_0 ^(2π)     (dx/(a+tsinx)) ⇒(∂f/∂t)(a,t) =−∫_0 ^(2π)  ((sinx)/((a+tsinx)^2 ))dx ⇒  ∫_0 ^(2π)    ((sinx)/((a +t sinx)^2 ))dx =−(∂f/∂t)(a,t)  case1   ∣t∣>∣a∣   ⇒ f(a,t)=0 ⇒ ∫_0 ^(2π)    ((sinx)/((a +tsinx)^2 ))dx=0  case 2  ∣t∣<∣a∣ ⇒f(a,t) =((−2π)/( (√(a^2 −t^2 )))) ⇒(∂f/∂t)(a,t) =−2π { (a^2 −t^2 )^(−(1/2)) }^((1)/t)   =−2π (−(1/2))(−2t) (a^2 −t^2 )^(−(3/2))  =((−2πt)/((a^2 −t^2 )(√(a^2  −t^2 )))) ⇒  ∫_0 ^(2π)     ((sinx)/((a+tsinx)^2 ))dx = ((2πt)/((a^2 −t^2 )(√(a^2  −t^2 )))) .
2)wehavef(a,t)=02πdxa+tsinxft(a,t)=02πsinx(a+tsinx)2dx02πsinx(a+tsinx)2dx=ft(a,t)case1t∣>∣af(a,t)=002πsinx(a+tsinx)2dx=0case2t∣<∣af(a,t)=2πa2t2ft(a,t)=2π{(a2t2)12}(1)/t=2π(12)(2t)(a2t2)32=2πt(a2t2)a2t202πsinx(a+tsinx)2dx=2πt(a2t2)a2t2.
Commented by maxmathsup by imad last updated on 24/Sep/18
3) we have f(a,t) = ∫_0 ^(2π)    (dx/(a+tsinx)) ⇒(∂f/∂a)(a,t) =−∫_0 ^(2π)    (dx/((a+tsinx)^2 )) ⇒  ∫_0 ^(2π)   (dx/((a+tsinx)^2 )) =−(∂f/∂a)(a,t)  case 1  ∣t∣>∣a∣ ⇒f(a,t)=0 ⇒ ∫_0 ^(2π)    (dx/((a+tsinx)^2 )) =0  case 2 ∣t∣<∣a∣ ⇒f(a,t) =((−2π)/( (√(a^2 −t^2 )))) ⇒(∂f/∂a)(a,t)=−2π{(a^2 −t^2 )^(−(1/2)) }^((1)/a)   =−2π (2a)(−(1/2))(a^2 −t^2 )^(−(3/2))   =((2π)/((a^2  −t^2 )(√(a^2 −t^2 )))) ⇒  ∫_0 ^(2π)     (dx/((a +t sinx)^2 )) =((−2π)/((a^2 −t^2 )(√(a^2 −t^2 )))) .
3)wehavef(a,t)=02πdxa+tsinxfa(a,t)=02πdx(a+tsinx)202πdx(a+tsinx)2=fa(a,t)case1t∣>∣af(a,t)=002πdx(a+tsinx)2=0case2t∣<∣af(a,t)=2πa2t2fa(a,t)=2π{(a2t2)12}(1)/a=2π(2a)(12)(a2t2)32=2π(a2t2)a2t202πdx(a+tsinx)2=2π(a2t2)a2t2.

Leave a Reply

Your email address will not be published. Required fields are marked *