find-f-a-t-0-2pi-dx-a-t-sinx-2-calculate-0-2pi-sinx-a-tsinx-2-dx-3-calculate-0-2pi-dx-a-tsinx-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 43909 by abdo.msup.com last updated on 17/Sep/18 findf(a,t)=∫02πdxa+tsinx2)calculate∫02πsinx(a+tsinx)2dx3)calculate∫02πdx(a+tsinx)2. Answered by maxmathsup by imad last updated on 24/Sep/18 changementeix=zgivef(a,t)=∫∣z∣=11a+tz−z−12idziz=∫∣z∣=12iiz{2ia+t(z−z−1)}dz=∫∣z∣=122iaz+tz2−tdzletφ(z)=2tz2+2iaz−tdz.polesofφΔ′=−a2+t2=t2−a2case1Δ′>0⇒z1=−ia+t2−a2tandz2=−ia−t2−a2t∣z1∣−1=1∣t∣a2+t2−a2=1⇒∣z1∣>1(outofcircle)∣z2∣−1=1∣t∣a2+t2−a2=1⇒∣z2∣>1(outofcircle)⇒∫∣z∣φ(z)dz=0case2Δ′<0⇒t2−a2<0⇒Δ′=(ia2−t2)2⇒z1=−ia+ia2−t2tz2=−ia−ia2−t2t∣z1∣−1=∣a−a2−t2∣∣t∣∣z2∣−1=∣a+a2−t2∣∣t∣ifa>0weget∣z1∣>1and∣z2∣>1⇒∫∣z∣=1φ(z)dz=0ifa<0∣z1∣>1and∣z2∣<1⇒∫∣z∣=1φ(z)dz=2iπRes(φ,z2)butφ(z)=2t(z−z1)(z−z2)⇒Res(φ,z2)=2t(z2−z1)=2t(−2ia2−t2t)=−1ia2−t2⇒∫∣z∣=1φ(z)dz=2iπ(−1)ia2−t2=−2πa2−t2=f(a,t) Commented by maxmathsup by imad last updated on 24/Sep/18 2)wehavef(a,t)=∫02πdxa+tsinx⇒∂f∂t(a,t)=−∫02πsinx(a+tsinx)2dx⇒∫02πsinx(a+tsinx)2dx=−∂f∂t(a,t)case1∣t∣>∣a∣⇒f(a,t)=0⇒∫02πsinx(a+tsinx)2dx=0case2∣t∣<∣a∣⇒f(a,t)=−2πa2−t2⇒∂f∂t(a,t)=−2π{(a2−t2)−12}(1)/t=−2π(−12)(−2t)(a2−t2)−32=−2πt(a2−t2)a2−t2⇒∫02πsinx(a+tsinx)2dx=2πt(a2−t2)a2−t2. Commented by maxmathsup by imad last updated on 24/Sep/18 3)wehavef(a,t)=∫02πdxa+tsinx⇒∂f∂a(a,t)=−∫02πdx(a+tsinx)2⇒∫02πdx(a+tsinx)2=−∂f∂a(a,t)case1∣t∣>∣a∣⇒f(a,t)=0⇒∫02πdx(a+tsinx)2=0case2∣t∣<∣a∣⇒f(a,t)=−2πa2−t2⇒∂f∂a(a,t)=−2π{(a2−t2)−12}(1)/a=−2π(2a)(−12)(a2−t2)−32=2π(a2−t2)a2−t2⇒∫02πdx(a+tsinx)2=−2π(a2−t2)a2−t2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-cos-2-x-sin-2-x-3-tan-2-x-dx-Next Next post: Question-174983 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.