Question Number 36335 by prof Abdo imad last updated on 31/May/18
$${find}\:\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\left({tx}^{\mathrm{2}} \right){dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${developp}\:\:{f}\:{at}\:{integr}\:{serie} \\ $$
Commented by prof Abdo imad last updated on 01/Jun/18
$${we}\:{have}\:\:{arctan}^{'} \left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} \:\Rightarrow \\ $$$${arctan}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{1}} \:{with}\:{radius}\:{of} \\ $$$${convergence}\:\:{R}\:=\mathrm{1}\:\:{so} \\ $$$${f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\left({tx}^{\mathrm{2}} \right)^{\mathrm{2}{n}+\mathrm{1}} {dx}\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{t}^{\mathrm{2}{n}+\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{4}{n}+\mathrm{2}} {dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{4}{n}+\mathrm{3}\right)}{t}^{\mathrm{2}{n}+\mathrm{1}} \:\:. \\ $$