Menu Close

find-f-t-0-1-ln-1-tx-2-dx-with-t-gt-0-




Question Number 30774 by abdo imad last updated on 25/Feb/18
find f(t)=∫_0 ^1  ln(1+tx^2 )dx  with t>0
findf(t)=01ln(1+tx2)dxwitht>0
Commented by abdo imad last updated on 26/Feb/18
let put (√t) x=u ⇒f(t)= ∫_0 ^(√t)  ln(1+u^2 )(du/( (√t)))  =(1/( (√t))) ∫_0 ^(√t) ln(1+u^2 )du  but we have by parts  ∫_0 ^(√t) ln(1+u^2 )du= [uln(1+u^2 )]_0 ^(√t)  −∫_0 ^(√t) u((2u)/(1+u^2 ))du  =(√t) ln(1+t) −2∫_0 ^(√t) ((1+u^2  −1)/(1+u^2 ))du  =(√t) ln(1+t) −2(√t) +2 ∫_0 ^(√t)  (du/(1+u^2 ))  =(√t) ln(1+t)−2(√t)  +2 arctan((√t))⇒  f(t)= ln(1+t) +((2 arctan((√t)))/( (√t))) −2 .
letputtx=uf(t)=0tln(1+u2)dut=1t0tln(1+u2)dubutwehavebyparts0tln(1+u2)du=[uln(1+u2)]0t0tu2u1+u2du=tln(1+t)20t1+u211+u2du=tln(1+t)2t+20tdu1+u2=tln(1+t)2t+2arctan(t)f(t)=ln(1+t)+2arctan(t)t2.
Answered by sma3l2996 last updated on 25/Feb/18
let  u=tx  f(t)=∫_0 ^t ln(1+u^2 )du  =[uln(1+u^2 )]_0 ^t −2∫_0 ^t (u^2 /(1+u^2 ))du  =tln(1+t^2 )−2∫_0 ^t (1−(1/(1+u^2 )))du  =tln(1+t^2 )−2[u−tan^(−1) (u)]_0 ^t   f(t)=tln(1+t^2 )−2t+2tan^(−1) (t)
letu=txf(t)=0tln(1+u2)du=[uln(1+u2)]0t20tu21+u2du=tln(1+t2)20t(111+u2)du=tln(1+t2)2[utan1(u)]0tf(t)=tln(1+t2)2t+2tan1(t)
Commented by abdo imad last updated on 26/Feb/18
if u=tx we have ln(1+tx^2 )≠ln(1+u^2 ) and your answer  sir sma3 is not corect...
ifu=txwehaveln(1+tx2)ln(1+u2)andyouranswersirsma3isnotcorect

Leave a Reply

Your email address will not be published. Required fields are marked *