Menu Close

find-f-t-0-sin-x-e-t-x-dx-with-t-gt-0-




Question Number 39035 by maxmathsup by imad last updated on 01/Jul/18
find f(t) =∫_0 ^∞    sin(x)e^(−t [x]) dx   with t>0
findf(t)=0sin(x)et[x]dxwitht>0
Commented by maxmathsup by imad last updated on 02/Jul/18
we have f(t)=Σ_(n=0) ^∞   ∫_n ^(n+1)  sin(x) e^(−nt)  dx  =Σ_(n=0) ^∞   e^(−nt)  {cos(n) −cos(n+1)}  =Σ_(n=0) ^∞  e^(−nt)  cos(n) −Σ_(n=0) ^∞  e^(−nt)  cos(n+1)  =Σ_(n=0) ^∞  e^(−nt) cos(n) −Σ_(n=1) ^∞  e^(−(n−1)t) cos(n)  = 1+(1−e^t )Σ_(n=1) ^∞   e^(−nt)  cos(n) but  Σ_(n=1) ^∞  e^(−nt)  cos(n) =Σ_(n=0) ^∞  e^(−nt) cos(n) −1  =Re( Σ_(n=0) ^∞  e^(−nt +in) ) =Re( Σ_(n=0) ^∞  (e^(−t+i) )^n ) but  Σ_(n=0) ^∞  (e^(−t+i) )^n  = (1/(1−e^(−t+i) )) = (1/(1−e^(−t) (cos1 +isin(1))))  = (1/(1−e^(−t)  cos(1)−i e^(−t) sin(1))) = ((1−e^(−t) cos(1) +i e^(−t) sin(1))/((1−e^(−t) cos(1))^2  +e^(−2t)  sin^2 (1))) ⇒  f(t) =1+(1−e^t ){ ((1−e^(−t) cos(1))/((1−e^(−t) cos(1))^2  +e^(−2t) sin^2 (1))) −1}
wehavef(t)=n=0nn+1sin(x)entdx=n=0ent{cos(n)cos(n+1)}=n=0entcos(n)n=0entcos(n+1)=n=0entcos(n)n=1e(n1)tcos(n)=1+(1et)n=1entcos(n)butn=1entcos(n)=n=0entcos(n)1=Re(n=0ent+in)=Re(n=0(et+i)n)butn=0(et+i)n=11et+i=11et(cos1+isin(1))=11etcos(1)ietsin(1)=1etcos(1)+ietsin(1)(1etcos(1))2+e2tsin2(1)f(t)=1+(1et){1etcos(1)(1etcos(1))2+e2tsin2(1)1}

Leave a Reply

Your email address will not be published. Required fields are marked *