Question Number 55998 by maxmathsup by imad last updated on 07/Mar/19
$${find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({t}^{\mathrm{2}} +{xt}\:+\mathrm{1}\right){dt}\:\:. \\ $$
Commented by MJS last updated on 08/Mar/19
$$\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{my}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{55994}\:\mathrm{but}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{complicated}\:\mathrm{to}\:\mathrm{expand} \\ $$
Answered by MJS last updated on 08/Mar/19
$$=\int\mathrm{arctan}\:\left({t}^{\mathrm{2}} +{xt}+\mathrm{1}\right)\:{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{t}+{x}\right)\mathrm{arctan}\:\left({t}^{\mathrm{2}} +{xt}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\sqrt{\mathrm{4}{t}+{x}^{\mathrm{2}} −\mathrm{4}}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\sqrt{\mathrm{4}{t}+{x}^{\mathrm{2}} −\mathrm{4}}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\sqrt{\mathrm{4}{t}+{x}^{\mathrm{2}} −\mathrm{4}}\:\rightarrow\:{dt}=\frac{\sqrt{\mathrm{4}{t}+{x}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}{du}\right] \\ $$$$=−\mathrm{4}\int\frac{{u}^{\mathrm{2}} }{\left({u}−{au}+{b}\right)\left({u}+{au}+{b}\right)}{du} \\ $$$$\mathrm{with}\:{a}=\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{8}+\mathrm{2}\sqrt{{x}^{\mathrm{4}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{32}}};\:{b}=\sqrt{{x}^{\mathrm{4}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{32}} \\ $$$$\mathrm{now}\:\mathrm{proceed}\:\mathrm{as}\:\mathrm{in}\:\mathrm{55994} \\ $$
Commented by MJS last updated on 08/Mar/19
$$\mathrm{you}'\mathrm{re}\:\mathrm{always}\:\mathrm{welcome} \\ $$
Commented by turbo msup by abdo last updated on 08/Mar/19
$${thanks}\:{sir}\:{MJS}. \\ $$