Menu Close

find-f-x-0-1-arctan-xt-dt-x-from-R-




Question Number 41135 by math khazana by abdo last updated on 02/Aug/18
find f(x)=∫_0 ^1 arctan(xt)dt  x from R
findf(x)=01arctan(xt)dtxfromR
Answered by math khazana by abdo last updated on 03/Aug/18
we have f^′ (x)= ∫_0 ^1    (t/(1+x^2 t^2 ))dt  =_(xt =u)   ∫_0 ^x     (u/(x(1+u^2 ))) (du/x) = (1/x^2 ) ∫_0 ^x    ((udu)/(1+u^2 ))  =(1/(2x^2 ))[ln(1+u^2 )]_0 ^x   =((ln(1+x^2 ))/(2x^2 )) ⇒  f(x) = ∫_0 ^x   ((ln(1+t^2 ))/(2t^2 )) dt +c  c=f(0) =0 ⇒ f(x)=∫_0 ^x  ((ln(1+t^2 ))/(2t^2 )) dt  by parts 2f(x)=[−(1/t)ln(1+t^2 )]_0 ^x  + ∫_0 ^x  (1/t) ((2t)/(1+t^2 ))dt  =−(1/x)ln(1+x^2 )  +2arctanx  ⇒  f(x)= arctan(x)−(1/(2x))ln(1+x^2 ) .
wehavef(x)=01t1+x2t2dt=xt=u0xux(1+u2)dux=1x20xudu1+u2=12x2[ln(1+u2)]0x=ln(1+x2)2x2f(x)=0xln(1+t2)2t2dt+cc=f(0)=0f(x)=0xln(1+t2)2t2dtbyparts2f(x)=[1tln(1+t2)]0x+0x1t2t1+t2dt=1xln(1+x2)+2arctanxf(x)=arctan(x)12xln(1+x2).
Commented by math khazana by abdo last updated on 03/Aug/18
let prove lim_(t→0)  ((ln(1+t^2 ))/t) =0 we have  ln(1+t^2 )∼ t^2 ⇒((ln(1+t^2 ))/t)∼ t (t→0) result is proved
letprovelimt0ln(1+t2)t=0wehaveln(1+t2)t2ln(1+t2)tt(t0)resultisproved

Leave a Reply

Your email address will not be published. Required fields are marked *