find-f-x-0-1-arctan-xt-dt-x-from-R- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 41135 by math khazana by abdo last updated on 02/Aug/18 findf(x)=∫01arctan(xt)dtxfromR Answered by math khazana by abdo last updated on 03/Aug/18 wehavef′(x)=∫01t1+x2t2dt=xt=u∫0xux(1+u2)dux=1x2∫0xudu1+u2=12x2[ln(1+u2)]0x=ln(1+x2)2x2⇒f(x)=∫0xln(1+t2)2t2dt+cc=f(0)=0⇒f(x)=∫0xln(1+t2)2t2dtbyparts2f(x)=[−1tln(1+t2)]0x+∫0x1t2t1+t2dt=−1xln(1+x2)+2arctanx⇒f(x)=arctan(x)−12xln(1+x2). Commented by math khazana by abdo last updated on 03/Aug/18 letprovelimt→0ln(1+t2)t=0wehaveln(1+t2)∼t2⇒ln(1+t2)t∼t(t→0)resultisproved Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-172202Next Next post: let-f-x-2x-x-1-find-f-1-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.