Menu Close

find-f-x-0-1-cos-xt-t-e-xt-dt-with-x-gt-0-1-find-asimple-form-of-f-x-2-calculate-0-1-cos-pit-t-e-t-dt-3-calculate-0-1-cos-3t-t-e-2t-dt-




Question Number 38453 by maxmathsup by imad last updated on 25/Jun/18
find  f(x)=∫_0 ^∞   ((1−cos(xt))/t) e^(−xt) dt with x>0  1) find asimple form of f(x)  2) calculate ∫_0 ^∞    ((1−cos(πt))/t) e^(−t) dt  3)calculate ∫_0 ^∞    ((1−cos(3t))/t) e^(−2t) dt
findf(x)=01cos(xt)textdtwithx>01)findasimpleformoff(x)2)calculate01cos(πt)tetdt3)calculate01cos(3t)te2tdt
Commented by math khazana by abdo last updated on 26/Jun/18
the Q is find f(x)=∫_0 ^∞   ((1−cos(at))/t) e^(−xt) dt
theQisfindf(x)=01cos(at)textdt
Commented by math khazana by abdo last updated on 29/Jun/18
1) we have f(x)=∫_0 ^∞    ((1−cos(at))/t) e^(−xt) dt ⇒  f^′ (x)=−∫_0 ^∞    (1−cos(at))e^(−xt) dt  =∫_0 ^∞   cos(at)e^(−xt) dt −∫_0 ^∞   e^(−xt) dt but  ∫_0 ^∞  e^(−xt) dt =[−(1/x)e^(−xt) ]_0 ^(+∞) =(1/x)  ∫_0 ^∞   cos(at) e^(−xt) dt =Re( ∫_0 ^∞  e^(iat−xt) dt)  ∫_0 ^∞    e^((−x+ia)t) dt = [ (1/(−x+ia))e^((−x+ia)t) ]_0 ^(+∞)   =((−1)/(−x+ia)) = (1/(x−ia)) = ((x+ia)/(x^2  +a^2 )) ⇒  ∫_0 ^∞   cos(at)e^(−xt) dt = (x/(x^2  +a^2 )) ⇒  f^′ (x)= (x/(x^2  +a^2 )) −(1/x) ⇒  f(x)= (1/2)ln(x^2  +a^2 ) −ln(x) +c  but ∃m>0 <  ∣ ∫_0 ^∞    ((1−cos(at))/t) e^(−xt) dt∣ ≤ m ∫_0 ^∞  e^(−xt) dt=(m/x) →0  when x→+∞ also we have   f(x)=(1/2)ln(((x^2 +a^2 )/x^2 )) +c ⇒  c=lim_(x→+∞) f(x)−(1/2)ln(((x^2  +a^2 )/x^2 ) )=0 ⇒  f(x)=(1/2)ln(x^2  +a^2 ) −ln(x)  with x>0
1)wehavef(x)=01cos(at)textdtf(x)=0(1cos(at))extdt=0cos(at)extdt0extdtbut0extdt=[1xext]0+=1x0cos(at)extdt=Re(0eiatxtdt)0e(x+ia)tdt=[1x+iae(x+ia)t]0+=1x+ia=1xia=x+iax2+a20cos(at)extdt=xx2+a2f(x)=xx2+a21xf(x)=12ln(x2+a2)ln(x)+cbutm>0<01cos(at)textdtm0extdt=mx0whenx+alsowehavef(x)=12ln(x2+a2x2)+cc=limx+f(x)12ln(x2+a2x2)=0f(x)=12ln(x2+a2)ln(x)withx>0
Commented by math khazana by abdo last updated on 29/Jun/18
2) we have proved that   ∫_0 ^∞    ((1−cos(at))/t) e^(−xt) dt =(1/2)ln(x^2  +a^2 )−ln(x)⇒  ∫_0 ^∞    ((1−cos(πt))/t) e^(−t) =(1/2)ln(1+π^2 ).
2)wehaveprovedthat01cos(at)textdt=12ln(x2+a2)ln(x)01cos(πt)tet=12ln(1+π2).
Commented by math khazana by abdo last updated on 29/Jun/18
3)?∫_0 ^∞   ((1−cos(3t))/t) e^(−2t) dt =(1/2)ln(2^2  +3^2 )−ln(2)  =(1/2)ln(13)−ln(2).
3)?01cos(3t)te2tdt=12ln(22+32)ln(2)=12ln(13)ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *