Question Number 38453 by maxmathsup by imad last updated on 25/Jun/18

Commented by math khazana by abdo last updated on 26/Jun/18

Commented by math khazana by abdo last updated on 29/Jun/18
![1) we have f(x)=∫_0 ^∞ ((1−cos(at))/t) e^(−xt) dt ⇒ f^′ (x)=−∫_0 ^∞ (1−cos(at))e^(−xt) dt =∫_0 ^∞ cos(at)e^(−xt) dt −∫_0 ^∞ e^(−xt) dt but ∫_0 ^∞ e^(−xt) dt =[−(1/x)e^(−xt) ]_0 ^(+∞) =(1/x) ∫_0 ^∞ cos(at) e^(−xt) dt =Re( ∫_0 ^∞ e^(iat−xt) dt) ∫_0 ^∞ e^((−x+ia)t) dt = [ (1/(−x+ia))e^((−x+ia)t) ]_0 ^(+∞) =((−1)/(−x+ia)) = (1/(x−ia)) = ((x+ia)/(x^2 +a^2 )) ⇒ ∫_0 ^∞ cos(at)e^(−xt) dt = (x/(x^2 +a^2 )) ⇒ f^′ (x)= (x/(x^2 +a^2 )) −(1/x) ⇒ f(x)= (1/2)ln(x^2 +a^2 ) −ln(x) +c but ∃m>0 < ∣ ∫_0 ^∞ ((1−cos(at))/t) e^(−xt) dt∣ ≤ m ∫_0 ^∞ e^(−xt) dt=(m/x) →0 when x→+∞ also we have f(x)=(1/2)ln(((x^2 +a^2 )/x^2 )) +c ⇒ c=lim_(x→+∞) f(x)−(1/2)ln(((x^2 +a^2 )/x^2 ) )=0 ⇒ f(x)=(1/2)ln(x^2 +a^2 ) −ln(x) with x>0](https://www.tinkutara.com/question/Q38736.png)
Commented by math khazana by abdo last updated on 29/Jun/18

Commented by math khazana by abdo last updated on 29/Jun/18
