Menu Close

find-f-x-0-1-ln-1-xt-2-dt-with-x-gt-0-2-give-thevalue-of-0-1-ln-1-t-2-dt-and-0-1-ln-1-2t-2-dt-




Question Number 31502 by abdo imad last updated on 09/Mar/18
find f(x)= ∫_0 ^1 ln(1+xt^2 )dt  with x>0.  2) give thevalue of  ∫_0 ^1  ln(1+t^2 )dt and ∫_0 ^1  ln(1+2t^2 )dt.
findf(x)=01ln(1+xt2)dtwithx>0.2)givethevalueof01ln(1+t2)dtand01ln(1+2t2)dt.
Commented by abdo imad last updated on 15/Mar/18
we have f^′ (x)= ∫_0 ^1    (t^2 /(1+xt^2 ))dt =(1/x) ∫_0 ^1  ((xt^2 )/(1+xt^2 ))dt  =(1/x) ∫_0 ^1   ((1+xt^2  −1)/(1+xt^2 ))dt = (1/x) −(1/x) ∫_0 ^1    (dt/(1+xt^2 ))  ch.(√x) t=u give  ∫_0 ^1    (dt/(1+xt^2 )) = ∫_0 ^((√x) )   (1/(1+u^2 )) (du/( (√x) )) =(1/( (√x) )) ∫_0 ^(√x)   (du/(1+u^2 ))  = (1/( (√x))) artan((√x)) ⇒ f^′ (x)= (1/x) −((arctan((√(x))))/(x(√x) )) ⇒  f(x)=ln∣x∣ −∫_1 ^x      ((arctan((√t)))/(t(√t))) dt +λ  λ=f(1)=∫_0 ^1 ln(1+t^2 )dt  so  f(x)=ln(x) −∫_1 ^x    ((arctan((√(t))))/(t(√t))) dt  +∫_0 ^1 ln(1+t^2 )dt ch.(√t)=u  give ∫_1 ^x   ((arctan((√t)))/(t(√t)))dt= ∫_1 ^(√x)   ((arctanu)/u^3 ) (2u)du  =2 ∫_1 ^(√x)     ((arctanu)/u^2 )du  =2( [−(1/u)arctanu]_1 ^(√x)  +∫_1 ^(√x)     (du/(u(1+u^2 ))))  =2((π/4) −((arctan((√x)))/( (√x))))+2 ∫_1 ^(√x)   (du/(u(1+u^2 ))) but  ∫_1 ^(√x)   (du/(u(1+u^2 ))) =∫_1 ^(√x)  ((1/u) −(u/(1+u^2 )))du  =[ln(u)−(1/2)ln(1+u^2 )]_1 ^(√x) =[ ln( (u/( (√(1+u^2 )))))]_1 ^(√x)   =ln(((√x)/( (√(1+x))))) −ln((1/( (√2))))=ln( ((√x)/( (√(1+x))))) +ln((√(2)))   finally  f(x)= ln(x)−(π/2) + ((arctan((√x)))/(2(√x))) −2ln(((√x)/( (√(1+x))))) −ln(2)  +∫_0 ^1 ln(1+t^2 )dt  .
wehavef(x)=01t21+xt2dt=1x01xt21+xt2dt=1x011+xt211+xt2dt=1x1x01dt1+xt2ch.xt=ugive01dt1+xt2=0x11+u2dux=1x0xdu1+u2=1xartan(x)f(x)=1xarctan(x)xxf(x)=lnx1xarctan(t)ttdt+λλ=f(1)=01ln(1+t2)dtsof(x)=ln(x)1xarctan(t)ttdt+01ln(1+t2)dtch.t=ugive1xarctan(t)ttdt=1xarctanuu3(2u)du=21xarctanuu2du=2([1uarctanu]1x+1xduu(1+u2))=2(π4arctan(x)x)+21xduu(1+u2)but1xduu(1+u2)=1x(1uu1+u2)du=[ln(u)12ln(1+u2)]1x=[ln(u1+u2)]1x=ln(x1+x)ln(12)=ln(x1+x)+ln(2)finallyf(x)=ln(x)π2+arctan(x)2x2ln(x1+x)ln(2)+01ln(1+t2)dt.
Commented by abdo imad last updated on 15/Mar/18
2) let put I = ∫_0 ^1  ln(1+t^2 )dt we have for ∣x∣<1  ln^′ (1+x) = (1/(1+x)) =Σ_(n=0) ^∞ (−1)^n x^n  ⇒  ln(1+x)= Σ_(n=0) ^∞  (((−1)^n )/(n+1))x^(n+1)  =Σ_(n=1) ^∞  (−1)^(n−1)  (x^n /n) ⇒  I = ∫_0 ^1  ( Σ_(n=1) ^∞ (−1)^(n−1)  (t^(2n) /n))dt  = Σ_(n=1) ^∞  (((−1)^(n−1) )/n) (1/(2n+1)) = Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(2n+1)))  (1/2) I = Σ_(n=1) ^∞  ( (1/(2n)) −(1/(2n+1)))(−1)^(n−1)   =(1/2) Σ_(n=1) ^∞  (((−1)^(n−1) )/n)   +Σ_(n=1) ^∞   (((−1)^n )/(2n+1))  =(1/2)ln(2) +(π/4) −1 ⇒ I= ln(2) +(π/2) −2
2)letputI=01ln(1+t2)dtwehaveforx∣<1ln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nn+1xn+1=n=1(1)n1xnnI=01(n=1(1)n1t2nn)dt=n=1(1)n1n12n+1=n=1(1)n1n(2n+1)12I=n=1(12n12n+1)(1)n1=12n=1(1)n1n+n=1(1)n2n+1=12ln(2)+π41I=ln(2)+π22
Commented by abdo imad last updated on 15/Mar/18
we have proved that  ∫_0 ^1  ln(1+t^2 )dt=ln(2) +(π/2) −2⇒  f(x)=∫_0 ^1 ln(1+xt^2 )dt=ln(x) −2  + ((actan((√x)))/(2(√x))) −2 ln(((√x)/( (√(1+x)))))  let take x=2 we obtain  ∫_0 ^1  ln(1+2t^2 )dt =ln(2)  + ((arctan((√2)))/(2(√2))) −2 ln(((√2)/( (√3)))) .
wehaveprovedthat01ln(1+t2)dt=ln(2)+π22f(x)=01ln(1+xt2)dt=ln(x)2+actan(x)2x2ln(x1+x)lettakex=2weobtain01ln(1+2t2)dt=ln(2)+arctan(2)222ln(23).

Leave a Reply

Your email address will not be published. Required fields are marked *