find-f-x-0-1-ln-1-xt-2-dt-with-x-gt-0-2-give-thevalue-of-0-1-ln-1-t-2-dt-and-0-1-ln-1-2t-2-dt- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 31502 by abdo imad last updated on 09/Mar/18 findf(x)=∫01ln(1+xt2)dtwithx>0.2)givethevalueof∫01ln(1+t2)dtand∫01ln(1+2t2)dt. Commented by abdo imad last updated on 15/Mar/18 wehavef′(x)=∫01t21+xt2dt=1x∫01xt21+xt2dt=1x∫011+xt2−11+xt2dt=1x−1x∫01dt1+xt2ch.xt=ugive∫01dt1+xt2=∫0x11+u2dux=1x∫0xdu1+u2=1xartan(x)⇒f′(x)=1x−arctan(x)xx⇒f(x)=ln∣x∣−∫1xarctan(t)ttdt+λλ=f(1)=∫01ln(1+t2)dtsof(x)=ln(x)−∫1xarctan(t)ttdt+∫01ln(1+t2)dtch.t=ugive∫1xarctan(t)ttdt=∫1xarctanuu3(2u)du=2∫1xarctanuu2du=2([−1uarctanu]1x+∫1xduu(1+u2))=2(π4−arctan(x)x)+2∫1xduu(1+u2)but∫1xduu(1+u2)=∫1x(1u−u1+u2)du=[ln(u)−12ln(1+u2)]1x=[ln(u1+u2)]1x=ln(x1+x)−ln(12)=ln(x1+x)+ln(2)finallyf(x)=ln(x)−π2+arctan(x)2x−2ln(x1+x)−ln(2)+∫01ln(1+t2)dt. Commented by abdo imad last updated on 15/Mar/18 2)letputI=∫01ln(1+t2)dtwehavefor∣x∣<1ln′(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nn+1xn+1=∑n=1∞(−1)n−1xnn⇒I=∫01(∑n=1∞(−1)n−1t2nn)dt=∑n=1∞(−1)n−1n12n+1=∑n=1∞(−1)n−1n(2n+1)12I=∑n=1∞(12n−12n+1)(−1)n−1=12∑n=1∞(−1)n−1n+∑n=1∞(−1)n2n+1=12ln(2)+π4−1⇒I=ln(2)+π2−2 Commented by abdo imad last updated on 15/Mar/18 wehaveprovedthat∫01ln(1+t2)dt=ln(2)+π2−2⇒f(x)=∫01ln(1+xt2)dt=ln(x)−2+actan(x)2x−2ln(x1+x)lettakex=2weobtain∫01ln(1+2t2)dt=ln(2)+arctan(2)22−2ln(23). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-pi-x-2-1-sinx-dx-Next Next post: calculate-0-1-dt-t-1-t-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.