Menu Close

find-f-x-0-1-ln-1-xt-3-dt-with-x-lt-1-2-calculate-0-1-ln-1-4t-3-dt-and-0-1-ln-2-t-3-dt-




Question Number 38465 by maxmathsup by imad last updated on 25/Jun/18
find  f(x)= ∫_0 ^1 ln(1+xt^3 )dt with ∣x∣<1 .  2) calculate  ∫_0 ^1 ln(1+4t^3 )dt   and ∫_0 ^1 ln(2+t^3 )dt.
findf(x)=01ln(1+xt3)dtwithx∣<1.2)calculate01ln(1+4t3)dtand01ln(2+t3)dt.
Commented by maxmathsup by imad last updated on 30/Jun/18
1) we have f(x)= ∫_0 ^1 (Σ_(n=1) ^∞ (((−1)^(n−1) )/n) x^n  t^(3n) )dt  = Σ_(n=1) ^∞   (((−1)^(n−1) )/n) x^n   (1/(3n+1)) = Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(3n+1)))x^n   ((f(x))/3) =Σ_(n=1) ^∞   (((−1)^(n−1) )/(3n(3n+1))) x^n  = Σ_(n=1) ^∞  (−1)^(n−1) { (1/(3n)) −(1/(3n+1))}x^n   =(1/3) Σ_(n=1) ^∞   (((−1)^(n−1) )/n)x^n  −Σ_(n=1) ^∞   (((−1)^(n−1) )/(3n+1)) x^n   but  Σ_(n=1) ^∞   (((−1)^n )/n) x^n  =ln(1+x)  let w(x)=Σ_(n=1) ^∞  (((−1)^(n−1) )/(3n+1)) x^n   if 0<x<1 w(x)= (1/x^(1/3) ) Σ_(n=1) ^∞   (((−1)^(n−1) )/(3n+1)) (^3 (√x))^(3n+1) =^3 ((√x))^(−1)  ϕ(^3 (√x)) with  ϕ(x)=Σ_(n=1) ^∞  (((−1)^(n−1) )/(3n+1)) x^(3n+1)    ⇒ϕ^′ (x)=Σ_(n=1) ^∞  (−1)^(n−1)  x^(3n)   =Σ_(n=0) ^∞   (−1)^n x^(3n+3) =x^3   (1/(1+x^3 )) =(x^3 /(1+x^3 )) ⇒ϕ(x)=∫_0 ^x  (t^3 /(1+t^3 ))dt +c  c=ϕ(o)=0 ⇒ ϕ(x)= ∫_0 ^x   (t^3 /(1+t^3 ))dt =∫_0 ^x  ((1+t^3 −1)/(1+t^3 ))dt  = x −∫_0 ^x     (dt/(1+t^3 ))  let decompose F(t)= (1/(1+t^3 ))  F(t)=(1/((t+1)(t^2 −t+1))) = (a/(t+1)) +((bt +c)/(t^2 −t +1))  a=lim_(t→−1) (t+1)ϕ(t)=(1/3)  lim_(t→+∞) t ϕ(t) = 0 =a+b ⇒b=−(1/3) ⇒F(t)= (1/(3(t+1))) +((−(1/3)t +c)/(t^2  −t+1))  F(0) =1 = (1/3) +c ⇒c=(2/3) ⇒F(x)= (1/(3(t+1))) +(1/3) ((−t +1)/(t^2  −t +1))  ∫_0 ^x  F(t)dt =(1/3) ∫_0 ^x  (dt/(t+1)) −(1/6) ∫_0 ^x   ((2t−1−1)/(t^2 −t +1))dt  = [ (1/3)ln∣t+1∣−(1/6)ln(∣t^2 −t+1∣]_0 ^x    +(1/6) ∫_0 ^x    (dt/(t^2 −t +1))  =[ (1/6)ln((((t+1)^2 )/(t^2 −t+1)))]_0 ^x  +(1/6) ∫_0 ^x     (dt/(t^2  −t +1)) =(1/6)ln(((x^2  +2x+1)/(x^2 −x+1))) +I  I  =(1/6) ∫_0 ^x    (dt/(t^2 −2 (t/2) +(1/4) +(3/4))) ⇒6I = ∫_0 ^x   (dt/((t−(1/2))^2  +(3/4)))  =_(t−(1/2) =((√3)/2)u)        (4/3)∫_(−(1/( (√3)))) ^((2x−1)/( (√3)))        (1/(1+u^2 ))  ((√3)/2) du  = (2/( (√3))) [arctan (((2x−1)/( (√3)))) +arctan((1/( (√3))))} ⇒  ∫_0 ^x  F(t)dt = (1/6)ln(((x^2  +2x+1)/(x^2  −x+1))) +(1/(3(√3))){ arctan(((2x−1)/( (√3)))) +arctan((1/( (√3))))}  ϕ(x) =x −(1/6)ln(((x^2  +2x+1)/(x^2  −x+1))) −(1/(3(√3))){ arctan(((2x−1)/( (√3))))+(π/6)}  w(x)= (1/((^3 (√x)))) ϕ(^3 (√x)) ⇒ ((f(x))/3) =(1/3)ln(1+x) −w(x) ⇒  f(x) =ln(1+x)−3w(x) .
1)wehavef(x)=01(n=1(1)n1nxnt3n)dt=n=1(1)n1nxn13n+1=n=1(1)n1n(3n+1)xnf(x)3=n=1(1)n13n(3n+1)xn=n=1(1)n1{13n13n+1}xn=13n=1(1)n1nxnn=1(1)n13n+1xnbutn=1(1)nnxn=ln(1+x)letw(x)=n=1(1)n13n+1xnif0<x<1w(x)=1x13n=1(1)n13n+1(3x)3n+1=3(x)1φ(3x)withφ(x)=n=1(1)n13n+1x3n+1φ(x)=n=1(1)n1x3n=n=0(1)nx3n+3=x311+x3=x31+x3φ(x)=0xt31+t3dt+cc=φ(o)=0φ(x)=0xt31+t3dt=0x1+t311+t3dt=x0xdt1+t3letdecomposeF(t)=11+t3F(t)=1(t+1)(t2t+1)=at+1+bt+ct2t+1a=limt1(t+1)φ(t)=13limt+tφ(t)=0=a+bb=13F(t)=13(t+1)+13t+ct2t+1F(0)=1=13+cc=23F(x)=13(t+1)+13t+1t2t+10xF(t)dt=130xdtt+1160x2t11t2t+1dt=[13lnt+116ln(t2t+1]0x+160xdtt2t+1=[16ln((t+1)2t2t+1)]0x+160xdtt2t+1=16ln(x2+2x+1x2x+1)+II=160xdtt22t2+14+346I=0xdt(t12)2+34=t12=32u43132x1311+u232du=23[arctan(2x13)+arctan(13)}0xF(t)dt=16ln(x2+2x+1x2x+1)+133{arctan(2x13)+arctan(13)}φ(x)=x16ln(x2+2x+1x2x+1)133{arctan(2x13)+π6}w(x)=1(3x)φ(3x)f(x)3=13ln(1+x)w(x)f(x)=ln(1+x)3w(x).
Commented by maxmathsup by imad last updated on 30/Jun/18
2) let  I = ∫_0 ^1 ln(2+t^3 )dt   I = ∫_0 ^1 ln(2( 1+(1/2)t^3 ))dt =ln(2) +∫_0 ^1 ln(1+(1/2)t^3 )dt  =ln(2) +f((1/2)) =ln(2) +ln((3/2))−3w((1/2))  =ln(2)+ln((3/2)) −3^3 (√2) ϕ((1/((^3 (√2)))))the value of ϕ(x)is known.
2)letI=01ln(2+t3)dtI=01ln(2(1+12t3))dt=ln(2)+01ln(1+12t3)dt=ln(2)+f(12)=ln(2)+ln(32)3w(12)=ln(2)+ln(32)332φ(1(32))thevalueofφ(x)isknown.

Leave a Reply

Your email address will not be published. Required fields are marked *