find-f-x-0-1-ln-1-xt-3-dt-with-x-lt-1-2-calculate-0-1-ln-1-4t-3-dt-and-0-1-ln-2-t-3-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 38465 by maxmathsup by imad last updated on 25/Jun/18 findf(x)=∫01ln(1+xt3)dtwith∣x∣<1.2)calculate∫01ln(1+4t3)dtand∫01ln(2+t3)dt. Commented by maxmathsup by imad last updated on 30/Jun/18 1)wehavef(x)=∫01(∑n=1∞(−1)n−1nxnt3n)dt=∑n=1∞(−1)n−1nxn13n+1=∑n=1∞(−1)n−1n(3n+1)xnf(x)3=∑n=1∞(−1)n−13n(3n+1)xn=∑n=1∞(−1)n−1{13n−13n+1}xn=13∑n=1∞(−1)n−1nxn−∑n=1∞(−1)n−13n+1xnbut∑n=1∞(−1)nnxn=ln(1+x)letw(x)=∑n=1∞(−1)n−13n+1xnif0<x<1w(x)=1x13∑n=1∞(−1)n−13n+1(3x)3n+1=3(x)−1φ(3x)withφ(x)=∑n=1∞(−1)n−13n+1x3n+1⇒φ′(x)=∑n=1∞(−1)n−1x3n=∑n=0∞(−1)nx3n+3=x311+x3=x31+x3⇒φ(x)=∫0xt31+t3dt+cc=φ(o)=0⇒φ(x)=∫0xt31+t3dt=∫0x1+t3−11+t3dt=x−∫0xdt1+t3letdecomposeF(t)=11+t3F(t)=1(t+1)(t2−t+1)=at+1+bt+ct2−t+1a=limt→−1(t+1)φ(t)=13limt→+∞tφ(t)=0=a+b⇒b=−13⇒F(t)=13(t+1)+−13t+ct2−t+1F(0)=1=13+c⇒c=23⇒F(x)=13(t+1)+13−t+1t2−t+1∫0xF(t)dt=13∫0xdtt+1−16∫0x2t−1−1t2−t+1dt=[13ln∣t+1∣−16ln(∣t2−t+1∣]0x+16∫0xdtt2−t+1=[16ln((t+1)2t2−t+1)]0x+16∫0xdtt2−t+1=16ln(x2+2x+1x2−x+1)+II=16∫0xdtt2−2t2+14+34⇒6I=∫0xdt(t−12)2+34=t−12=32u43∫−132x−1311+u232du=23[arctan(2x−13)+arctan(13)}⇒∫0xF(t)dt=16ln(x2+2x+1x2−x+1)+133{arctan(2x−13)+arctan(13)}φ(x)=x−16ln(x2+2x+1x2−x+1)−133{arctan(2x−13)+π6}w(x)=1(3x)φ(3x)⇒f(x)3=13ln(1+x)−w(x)⇒f(x)=ln(1+x)−3w(x). Commented by maxmathsup by imad last updated on 30/Jun/18 2)letI=∫01ln(2+t3)dtI=∫01ln(2(1+12t3))dt=ln(2)+∫01ln(1+12t3)dt=ln(2)+f(12)=ln(2)+ln(32)−3w(12)=ln(2)+ln(32)−332φ(1(32))thevalueofφ(x)isknown. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-169538Next Next post: let-a-from-R-find-F-a-t-cos-tx-a-2-x-2-dx-2-calculate-F-2-3-and-F-3-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.