Menu Close

find-f-x-0-arctan-1-e-xt-dt-with-x-gt-0-2-find-0-arctan-1-e-2t-dt-




Question Number 38461 by maxmathsup by imad last updated on 25/Jun/18
find  f(x) = ∫_0 ^∞  arctan(1+e^(−xt) )dt  with x>0  2) find ∫_0 ^∞   arctan(1+e^(−2t) )dt.
$${find}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:{arctan}\left(\mathrm{1}+{e}^{−{xt}} \right){dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\infty} \:\:{arctan}\left(\mathrm{1}+{e}^{−\mathrm{2}{t}} \right){dt}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *