find-f-x-0-arctan-xt-1-t-2-dt-with-x-real- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 53284 by maxmathsup by imad last updated on 20/Jan/19 findf(x)=∫0∞arctan(xt)1+t2dtwithxreal. Commented by prof Abdo imad last updated on 21/Jan/19 wehavef′(x)=∫0∞t(1+x2t2)(1+t2)dt=xt=u∫0∞ux(1+u2)(1+u2x2)dux=∫0∞u(u2+1))(u2+x2)duletdecomposeF(u)=u(u2+1)(u2+x2)⇒F(u)=au+bu2+1+cu+du2+x2F(−u)=−F(u)⇒−au+bu2+1+−cu+du2+x2=−au−bu2+1+−cu−du2+x2⇒b=d=0⇒F(u)=auu2+1+cuu2+x2limu→+∞uF(u)=0=a+c⇒c=−a⇒F(u)=auu2+1−auu2+x2F(1)=12(1+x2)=a2−a1+x2=a+ax2−2a2(1+x2)⇒(x2−1)a=1⇒a=1x2−1(wesupposex≠+−1)⇒F(u)=1x2−1{uu2+1−uu2+x2}⇒f′(x)=1x2−1∫0∞(uu2+1−uu2+x2)du=12(x2−1)[ln∣u2+1u2+x2∣]0+∞=12(x2−1)(2ln∣x∣)=ln∣x∣x2−1letsupposex>1⇒f′(x)=ln(x)x2−1⇒f(x)=∫1xln(t)t2−1dt+λλ=f(1)=∫0∞arctan(t)1+t2dtbypartsλ=[arctan2(t)]0∞−∫0∞arctan(t)1+t2dt=π24−λ⇒2λ=π24⇒λ=π28⇒f(x)=∫1xln(t)t2−1dt+π28 Commented by prof Abdo imad last updated on 21/Jan/19 letdetetmine∫1xln(t)t2−1dtchsng.t=1ugive∫1xln(t)t2−1dt=∫11x−ln(u)(1u2−1)(−duu2)=∫11xln(u)u2−1du=∫1x1ln(u)1−u2du=12∫1x1ln(u){11−u+11+u}du=12∫1x1ln(u)1−udu+12∫1x1ln(u)1+udu∫1x1ln(u)1−udu=∫1x1ln(u){∑n=0∞un)du=∑n=0∞∫1x1unln(u)du=∑n=0∞AnbypartsAn=[1n+1un+1ln(u)]1x1−∫1x1unn+1du=ln(x)(n+1)xn+1−1(n+1)[1n+1un+1]1x1=ln(x)(n+1)xn+1−1(n+1)2{1−1xn+1}⇒∫1x1ln(u)1−udu=ln(x)∑n=0∞1(n+1)xn+1−∑n=0∞1(n+1)2+∑n=0∞1(n+1)2xn+1∑n=0∞1(n+1)2=ξ(2)=π26letfind∑n=0∞1(n+1)xn+1becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-184352Next Next post: Question-184356 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.