Menu Close

find-f-x-0-arctan-xt-1-t-2-dt-with-x-real-




Question Number 53284 by maxmathsup by imad last updated on 20/Jan/19
find f(x)=∫_0 ^∞  ((arctan(xt))/(1+t^2 ))dt    with x real .
findf(x)=0arctan(xt)1+t2dtwithxreal.
Commented by prof Abdo imad last updated on 21/Jan/19
we have f^′ (x)=∫_0 ^∞  (t/((1+x^2 t^2 )(1+t^2 )))dt  =_(xt =u)  ∫_0 ^∞   (u/(x(1+u^2 )(1+(u^2 /x^2 )))) (du/x)  =∫_0 ^∞     (u/((u^2  +1))(u^2  +x^2 )))du let decompose  F(u)=(u/((u^2  +1)(u^2  +x^2 ))) ⇒  F(u)=((au+b)/(u^2  +1)) +((cu +d)/(u^2  +x^2 ))  F(−u)=−F(u) ⇒((−au +b)/(u^2  +1)) +((−cu +d)/(u^2  +x^2 ))  =((−au−b)/(u^2  +1)) +((−cu−d)/(u^2  +x^2 )) ⇒b=d=0 ⇒  F(u) =((au)/(u^2  +1)) +((cu)/(u^2  +x^2 ))  lim_(u→+∞) u F(u)=0 =a+c ⇒c=−a ⇒  F(u) =((au)/(u^2  +1)) −((au)/(u^2  +x^2 ))  F(1)= (1/(2(1+x^2 ))) =(a/2)−(a/(1+x^2 ))=((a +ax^2 −2a)/(2(1+x^2 ))) ⇒  (x^2 −1)a =1  ⇒a =(1/(x^2 −1)) (we suppose x≠+^− 1) ⇒  F(u) =(1/(x^2 −1)){ (u/(u^2  +1)) −(u/(u^2  +x^2 ))} ⇒  f^′ (x) =(1/(x^2 −1))∫_0 ^∞  ((u/(u^2 +1)) −(u/(u^2  +x^2 )))du  =(1/(2(x^2 −1)))[ln∣((u^(2 ) +1)/(u^2  +x^2 ))∣]_0 ^(+∞) =(1/(2(x^2 −1)))(2ln∣x∣)  =((ln∣x∣)/(x^2 −1))  let suppose x>1 ⇒  f^′ (x) =((ln(x))/(x^2 −1)) ⇒ f(x)=∫_1 ^x ((ln(t))/(t^2 −1)) dt +λ  λ =f(1) =∫_0 ^∞   ((arctan(t))/(1+t^2 ))dt by parts  λ =[arctan^2 (t)]_0 ^∞  −∫_0 ^∞  ((arctan(t))/(1+t^2 ))dt  =(π^2 /4) −λ ⇒2λ =(π^2 /4) ⇒λ=(π^2 /8) ⇒  f(x)=∫_1 ^x   ((ln(t))/(t^2 −1))dt +(π^2 /8)
wehavef(x)=0t(1+x2t2)(1+t2)dt=xt=u0ux(1+u2)(1+u2x2)dux=0u(u2+1))(u2+x2)duletdecomposeF(u)=u(u2+1)(u2+x2)F(u)=au+bu2+1+cu+du2+x2F(u)=F(u)au+bu2+1+cu+du2+x2=aubu2+1+cudu2+x2b=d=0F(u)=auu2+1+cuu2+x2limu+uF(u)=0=a+cc=aF(u)=auu2+1auu2+x2F(1)=12(1+x2)=a2a1+x2=a+ax22a2(1+x2)(x21)a=1a=1x21(wesupposex+1)F(u)=1x21{uu2+1uu2+x2}f(x)=1x210(uu2+1uu2+x2)du=12(x21)[lnu2+1u2+x2]0+=12(x21)(2lnx)=lnxx21letsupposex>1f(x)=ln(x)x21f(x)=1xln(t)t21dt+λλ=f(1)=0arctan(t)1+t2dtbypartsλ=[arctan2(t)]00arctan(t)1+t2dt=π24λ2λ=π24λ=π28f(x)=1xln(t)t21dt+π28
Commented by prof Abdo imad last updated on 21/Jan/19
let detetmine ∫_1 ^x  ((ln(t))/(t^2 −1))dt chsng.t =(1/u) give  ∫_1 ^x   ((ln(t))/(t^2 −1))dt =∫_1 ^(1/x)  ((−ln(u))/(((1/u^2 )−1))) (−(du/u^2 ))  =∫_1 ^(1/x)   ((ln(u))/(u^2 −1)) du =∫_(1/x) ^1   ((ln(u))/(1−u^2 ))du  =(1/2)∫_(1/x) ^1  ln(u){ (1/(1−u)) +(1/(1+u))}du  =(1/2) ∫_(1/x) ^1   ((ln(u))/(1−u))du +(1/2) ∫_(1/x) ^1   ((ln(u))/(1+u))du  ∫_(1/x) ^1  ((ln(u))/(1−u))du =∫_(1/x) ^1 ln(u){Σ_(n=0) ^∞ u^n )du  =Σ_(n=0) ^∞  ∫_(1/x) ^1  u^n  ln(u)du =Σ_(n=0) ^∞  A_n   by parts A_n =[(1/(n+1))u^(n+1) ln(u)]_(1/x) ^1  −∫_(1/x) ^1  (u^n /(n+1))du  =((ln(x))/((n+1)x^(n+1) )) −(1/((n+1)))[(1/(n+1)) u^(n+1) ]_(1/x) ^1   =((ln(x))/((n+1)x^(n+1) )) −(1/((n+1)^2 )){1−(1/x^(n+1) )} ⇒  ∫_(1/x) ^1  ((ln(u))/(1−u)) du =ln(x)Σ_(n=0) ^∞  (1/((n+1)x^(n+1) ))  −Σ_(n=0) ^∞  (1/((n+1)^2 )) +Σ_(n=0) ^∞  (1/((n+1)^2 x^(n+1) ))  Σ_(n=0) ^∞  (1/((n+1)^2 )) =ξ(2) =(π^2 /6)  let find Σ_(n=0) ^∞   (1/((n+1)x^(n+1) ))  be continued...
letdetetmine1xln(t)t21dtchsng.t=1ugive1xln(t)t21dt=11xln(u)(1u21)(duu2)=11xln(u)u21du=1x1ln(u)1u2du=121x1ln(u){11u+11+u}du=121x1ln(u)1udu+121x1ln(u)1+udu1x1ln(u)1udu=1x1ln(u){n=0un)du=n=01x1unln(u)du=n=0AnbypartsAn=[1n+1un+1ln(u)]1x11x1unn+1du=ln(x)(n+1)xn+11(n+1)[1n+1un+1]1x1=ln(x)(n+1)xn+11(n+1)2{11xn+1}1x1ln(u)1udu=ln(x)n=01(n+1)xn+1n=01(n+1)2+n=01(n+1)2xn+1n=01(n+1)2=ξ(2)=π26letfindn=01(n+1)xn+1becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *