Menu Close

find-f-x-0-arctan-xt-2-dt-with-x-fromR-




Question Number 41273 by prof Abdo imad last updated on 04/Aug/18
find  f(x)=∫_0 ^(+∞)  arctan(xt^2 )dt  with x fromR .
$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}\:{fromR}\:. \\ $$
Commented by MJS last updated on 04/Aug/18
I think this integral is divergent  x<0 ⇒ f(x)=−∞  x=0 ⇒ f(x)=0  x>0 ⇒ f(x)=+∞
$$\mathrm{I}\:\mathrm{think}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{divergent} \\ $$$${x}<\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)=−\infty \\ $$$${x}=\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{0} \\ $$$${x}>\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)=+\infty \\ $$
Commented by math khazana by abdo last updated on 04/Aug/18
yes sir i will change the question thanks
$${yes}\:{sir}\:{i}\:{will}\:{change}\:{the}\:{question}\:{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *