Question Number 41273 by prof Abdo imad last updated on 04/Aug/18
$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}\:{fromR}\:. \\ $$
Commented by MJS last updated on 04/Aug/18
$$\mathrm{I}\:\mathrm{think}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{divergent} \\ $$$${x}<\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)=−\infty \\ $$$${x}=\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{0} \\ $$$${x}>\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)=+\infty \\ $$
Commented by math khazana by abdo last updated on 04/Aug/18
$${yes}\:{sir}\:{i}\:{will}\:{change}\:{the}\:{question}\:{thanks} \\ $$