Question Number 36336 by prof Abdo imad last updated on 31/May/18
$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:{with}\:{x}>\mathrm{0} \\ $$
Commented by abdo.msup.com last updated on 01/Jun/18
$${we}\:{have}\:{f}^{'} \left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{4}} }{dt} \\ $$$$\mathrm{2}{f}^{'} \left({x}\right)=\int_{−\infty} ^{+\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{{x}^{\mathrm{2}} {t}^{\mathrm{4}} \:+\mathrm{1}}{dt}\:{let}\:{consider} \\ $$$${the}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} {z}^{\mathrm{4}} \:+\mathrm{1}}\:{we}\:{have} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left\{\:{z}^{\mathrm{4}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right\}} \\ $$$$=\:\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left\{{z}^{\mathrm{2}} \:−\frac{{i}}{{x}}\right\}\left({z}^{\mathrm{2}} \:+\frac{{i}}{{x}}\right)} \\ $$$$=\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({z}\:−\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\left({z}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\left({z}−\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)\left({z}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)+{Res}\left(\varphi,−\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$${Res}\left(\varphi,\:\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\:=\:\frac{{i}}{{x}^{\mathrm{3}} \left(\frac{\mathrm{2}}{\:\sqrt{{x}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left(\frac{\mathrm{2}{i}}{{x}}\right)} \\ $$$$=\:\frac{\sqrt{{x}}}{\mathrm{4}{x}^{\mathrm{2}} }\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \\ $$$${Res}\left(\varphi,−\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)=\:\frac{−{i}}{{x}^{\mathrm{3}} \left(\frac{−\mathrm{2}}{\:\sqrt{{x}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left(\frac{−\mathrm{2}{i}}{{x}}\right)} \\ $$$$=−\frac{\sqrt{{x}}}{\mathrm{4}{x}^{\mathrm{2}} }\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:.\frac{\sqrt{{x}}}{\mathrm{4}{x}^{\mathrm{2}} }\left\{\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right\} \\ $$$$=\frac{{i}\pi\sqrt{{x}}}{\mathrm{2}{x}^{\mathrm{2}} }\left\{−\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{4}}\right)\right\} \\ $$$$=\frac{\pi\sqrt{{x}}}{{x}^{\mathrm{2}} }\:\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\:\frac{\pi\sqrt{{x}}}{{x}^{\mathrm{2}} \sqrt{\mathrm{2}}} \\ $$
Commented by abdo.msup.com last updated on 01/Jun/18
$$\Rightarrow{f}^{'} \left({x}\right)\:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\frac{\sqrt{{x}}}{{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${f}\left({x}\right)=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:\int\:\:\:\:\:\:\frac{\sqrt{{x}}\:{dx}}{{x}^{\mathrm{2}} }\:+{c}\:\:{but} \\ $$$$\int\:\:\frac{\sqrt{{x}}{dx}}{{x}^{\mathrm{2}} }\:=_{\sqrt{{x}}={t}} \:\int\:\:\:\:\:\frac{{t}}{{t}^{\mathrm{4}} }\:\mathrm{2}{t}\:{dt} \\ $$$$=\:\mathrm{2}\:\int\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} }\:=\:−\frac{\mathrm{2}}{{t}}\:+\lambda\:=\:\frac{−\mathrm{2}}{\:\sqrt{{x}}}\:+\lambda\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:\frac{−\mathrm{2}}{\:\sqrt{{x}}}\:+{c}\:=\:\frac{−\pi}{\:\sqrt{\mathrm{2}{x}}}\:\:+{c} \\ $$
Commented by abdo.msup.com last updated on 01/Jun/18
$${we}\:{have}\:{f}\left(\mathrm{1}\right)\:=\:−\frac{\pi}{\mathrm{2}}\:+{c}\:\Rightarrow \\ $$$${c}=\frac{\pi}{\mathrm{2}}\:+{f}\left(\mathrm{1}\right)\:=\frac{\pi}{\mathrm{2}}\:+\int_{\mathrm{0}} ^{\infty} \:{arctan}\left({x}^{\mathrm{2}} \right)\:{dx} \\ $$$${f}\left({x}\right)=\:−\frac{\pi}{\mathrm{2}\sqrt{{x}}}\:\:+\frac{\pi}{\mathrm{2}}\:+\:\int_{\mathrm{0}} ^{\infty} \:{arctan}\left({x}^{\mathrm{2}} \right){dx}\:. \\ $$$${the}\:{value}\:{of}\:{this}\:{integral}\:{is}\:{easy}\:{to} \\ $$$${find}.\left({by}\:{parts}\right) \\ $$
Commented by prof Abdo imad last updated on 01/Jun/18
$$\:{let}\:{put}\:\:{L}\:={lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:\Rightarrow{c}={Lso} \\ $$$${f}\left({x}\right)=\:{L}−\frac{\pi}{\:\sqrt{\mathrm{2}{x}}}\:. \\ $$