Menu Close

find-f-x-0-arctan-xt-2-dt-with-x-gt-0-




Question Number 36336 by prof Abdo imad last updated on 31/May/18
find f(x)= ∫_0 ^∞   arctan(xt^2 )dt with x>0
findf(x)=0arctan(xt2)dtwithx>0
Commented by abdo.msup.com last updated on 01/Jun/18
we have f^′ (x)=∫_0 ^∞   (t^2 /(1+x^2 t^4 ))dt  2f^′ (x)=∫_(−∞) ^(+∞)    (t^2 /(x^2 t^4  +1))dt let consider  the complex function  ϕ(z) =(z^2 /(x^2 z^4  +1)) we have  ϕ(z) = (z^2 /(x^2 { z^4  +(1/x^2 )}))  = (z^2 /(x^2 {z^2  −(i/x)}(z^2  +(i/x))))  =(z^2 /(x^2 (z −(1/( (√x)))e^(i(π/4)) )(z +(1/( (√x)))e^(i(π/4)) )(z−(1/( (√x)))e^(−i(π/4)) )(z +(1/( (√x)))e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{ Res(ϕ,(1/( (√x)))e^((iπ)/4) )+Res(ϕ,−(1/( (√x)))e^(−((iπ)/4)) )}  Res(ϕ, (1/( (√x)))e^(i(π/4)) ) = (i/(x^3 ((2/( (√x)))e^((iπ)/4) )(((2i)/x))))  = ((√x)/(4x^2 )) e^(−((iπ)/4))   Res(ϕ,−(1/( (√x)))e^(−((iπ)/4)) )= ((−i)/(x^3 (((−2)/( (√x)))e^(−((iπ)/4)) )(((−2i)/x))))  =−((√x)/(4x^2 )) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ .((√x)/(4x^2 )){ e^(−((iπ)/4))  −e^((iπ)/4) }  =((iπ(√x))/(2x^2 )){−2isin((π/4))}  =((π(√x))/x^2 )  ((√2)/2) = ((π(√x))/(x^2 (√2)))
wehavef(x)=0t21+x2t4dt2f(x)=+t2x2t4+1dtletconsiderthecomplexfunctionφ(z)=z2x2z4+1wehaveφ(z)=z2x2{z4+1x2}=z2x2{z2ix}(z2+ix)=z2x2(z1xeiπ4)(z+1xeiπ4)(z1xeiπ4)(z+1xeiπ4)+φ(z)dz=2iπ{Res(φ,1xeiπ4)+Res(φ,1xeiπ4)}Res(φ,1xeiπ4)=ix3(2xeiπ4)(2ix)=x4x2eiπ4Res(φ,1xeiπ4)=ix3(2xeiπ4)(2ix)=x4x2eiπ4+φ(z)dz=2iπ.x4x2{eiπ4eiπ4}=iπx2x2{2isin(π4)}=πxx222=πxx22
Commented by abdo.msup.com last updated on 01/Jun/18
⇒f^′ (x) = (π/(2(√2)))  ((√x)/x^2 ) ⇒  f(x)= (π/(2(√2))) ∫      (((√x) dx)/x^2 ) +c  but  ∫  (((√x)dx)/x^2 ) =_((√x)=t)  ∫     (t/t^4 ) 2t dt  = 2 ∫   (dt/t^2 ) = −(2/t) +λ = ((−2)/( (√x))) +λ ⇒  f(x) = (π/(2(√2))) ((−2)/( (√x))) +c = ((−π)/( (√(2x))))  +c
f(x)=π22xx2f(x)=π22xdxx2+cbutxdxx2=x=ttt42tdt=2dtt2=2t+λ=2x+λf(x)=π222x+c=π2x+c
Commented by abdo.msup.com last updated on 01/Jun/18
we have f(1) = −(π/2) +c ⇒  c=(π/2) +f(1) =(π/2) +∫_0 ^∞  arctan(x^2 ) dx  f(x)= −(π/(2(√x)))  +(π/2) + ∫_0 ^∞  arctan(x^2 )dx .  the value of this integral is easy to  find.(by parts)
wehavef(1)=π2+cc=π2+f(1)=π2+0arctan(x2)dxf(x)=π2x+π2+0arctan(x2)dx.thevalueofthisintegraliseasytofind.(byparts)
Commented by prof Abdo imad last updated on 01/Jun/18
 let put  L =lim_(x→+∞) f(x) ⇒c=Lso  f(x)= L−(π/( (√(2x)))) .
letputL=limx+f(x)c=Lsof(x)=Lπ2x.

Leave a Reply

Your email address will not be published. Required fields are marked *