Menu Close

find-f-x-0-cos-x-t-2-dtand-g-x-0-sin-x-t-2-dt-2-find-the-value-of-f-x-and-g-x-




Question Number 45771 by maxmathsup by imad last updated on 16/Oct/18
find f(x)=∫_0 ^∞  cos(x+t^2 )dtand g(x)=∫_0 ^∞  sin(x+t^2 )dt  2) find the value of f^′ (x) and g^′ (x).
findf(x)=0cos(x+t2)dtandg(x)=0sin(x+t2)dt2)findthevalueoff(x)andg(x).
Answered by maxmathsup by imad last updated on 18/Oct/18
1)we have f(x)−ig(x)=∫_0 ^∞  e^(−i(x+t^2 )) dt = e^(−ix)  ∫_0 ^∞  e^(−it^2 ) dt  =e^(−ix)  ∫_0 ^∞   e^(−((√i)t)^2 ) dt =_(t(√i)=u)  e^(−ix)  ∫_0 ^∞   e^(−u^2 )  (du/( (√i)))  =e^(−ix)  e^(−i(π/4))  ∫_0 ^∞  e^(−u^2 ) du =((√π)/2) e^(−i(x+(π/4))) =((√π)/2){ cos(x+(π/4))−isin(x+(π/4))} ⇒  f(x)=((√π)/2) cos(x+(π/4)) and g(x)=((√π)/2)sin(x+(π/4)) .
1)wehavef(x)ig(x)=0ei(x+t2)dt=eix0eit2dt=eix0e(it)2dt=ti=ueix0eu2dui=eixeiπ40eu2du=π2ei(x+π4)=π2{cos(x+π4)isin(x+π4)}f(x)=π2cos(x+π4)andg(x)=π2sin(x+π4).
Commented by maxmathsup by imad last updated on 18/Oct/18
2) we have f^′ (x)=−((√π)/2)sin(x+(π/4)) and g^′ (x)=((√π)/2) cos(x+(π/4)).
2)wehavef(x)=π2sin(x+π4)andg(x)=π2cos(x+π4).

Leave a Reply

Your email address will not be published. Required fields are marked *