Menu Close

find-f-x-0-e-x-1-t-2-1-t-2-dt-interms-ofx-with-x-0-and-calculate-0-e-t-2-dt-




Question Number 27342 by abdo imad last updated on 05/Jan/18
find f(x)= ∫_0 ^∞   (e^(−x(1+t^2 )) /(1+t^2 )) dt  interms ofx  with x≥0   and calculate  ∫_0 ^∞   e^(−t^2 ) dt .
findf(x)=0ex(1+t2)1+t2dtintermsofxwithx0andcalculate0et2dt.
Commented by abdo imad last updated on 08/Jan/18
after verifying that f is derivable in [0,∝[  f^, (x)= ∫_0 ^∞ (∂/∂x)( (e^(−x(1+t^2 )) /(1+t^2 )) )dt= ∫_0 ^∞ − e^(−x(1+t^2 )) dt  =−e^(−x)  ∫_0 ^∞ e^(−xt^2 ) dt   the ch. (√x) t = u give  f^, (x)= −e^(−x)  ∫_0 ^∞  e^(−u^2 )   (du/( (√x)))=−(e^(−x) /( (√x))) ∫_0 ^∞  e^(−u^2 ) du  =−((√π)/2)  (e^(−x) /( (√x)))                 (x>0)  ⇒f(x)= −((√π)/2) ∫_0 ^x   (e^(−t) /( (√t))) dt  +λ   after that we use the ch.(√t)=u  f(x)=−((√π)/2) ∫_0 ^(√x)    (e^(−u^2 ) /u) 2udu +λ  =λ − (√π)  ∫_0 ^(√x)   e^(−u^2 ) du  lim_(x−>∝)  f(x)=0= λ −(√π) ∫_0 ^∝  e^(−u^2 ) du=λ−(π/2)  ⇒  λ=(π/2)  finally  f(x)= (π/2) −(√π)  ∫_0 ^(√x)    e^(−u^2 ) du  we have a lots of method to prove that  ∫_0 ^∞  e^(−x^2 ) dx=((√π)/2)  .
afterverifyingthatfisderivablein[0,[f,(x)=0x(ex(1+t2)1+t2)dt=0ex(1+t2)dt=ex0ext2dtthech.xt=ugivef,(x)=ex0eu2dux=exx0eu2du=π2exx(x>0)f(x)=π20xettdt+λafterthatweusethech.t=uf(x)=π20xeu2u2udu+λ=λπ0xeu2dulimx>∝f(x)=0=λπ0eu2du=λπ2λ=π2finallyf(x)=π2π0xeu2duwehavealotsofmethodtoprovethat0ex2dx=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *