Menu Close

find-f-x-0-ln-t-dt-1-xt-2-withx-gt-0-




Question Number 44472 by abdo.msup.com last updated on 29/Sep/18
find  f(x)=∫_0 ^∞  ((ln(t)dt)/((1+xt)^2 )) withx>0
findf(x)=0ln(t)dt(1+xt)2withx>0
Commented by maxmathsup by imad last updated on 30/Sep/18
changement xt =u give   f(x) =∫_0 ^∞   ((ln((u/x)))/((1+u)^2 )) (du/x) =(1/x)∫_0 ^∞    ((ln(u)−ln(x))/((1+u)^2 ))du  =(1/x)∫_0 ^∞   ((ln(u))/((1+u)^2 )) du −((ln(x))/x) ∫_0 ^∞    (du/((1+u)^2 ))  =0 −((ln(x))/x) [−(1/(1+u))]_0 ^(+∞)  =−((ln(x))/x) ⇒f(x) =−((ln(x))/x) .
changementxt=ugivef(x)=0ln(ux)(1+u)2dux=1x0ln(u)ln(x)(1+u)2du=1x0ln(u)(1+u)2duln(x)x0du(1+u)2=0ln(x)x[11+u]0+=ln(x)xf(x)=ln(x)x.

Leave a Reply

Your email address will not be published. Required fields are marked *