Menu Close

find-f-x-0-ln-t-dt-1-xt-2-withx-gt-0-




Question Number 44472 by abdo.msup.com last updated on 29/Sep/18
find  f(x)=∫_0 ^∞  ((ln(t)dt)/((1+xt)^2 )) withx>0
$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{2}} }\:{withx}>\mathrm{0} \\ $$
Commented by maxmathsup by imad last updated on 30/Sep/18
changement xt =u give   f(x) =∫_0 ^∞   ((ln((u/x)))/((1+u)^2 )) (du/x) =(1/x)∫_0 ^∞    ((ln(u)−ln(x))/((1+u)^2 ))du  =(1/x)∫_0 ^∞   ((ln(u))/((1+u)^2 )) du −((ln(x))/x) ∫_0 ^∞    (du/((1+u)^2 ))  =0 −((ln(x))/x) [−(1/(1+u))]_0 ^(+∞)  =−((ln(x))/x) ⇒f(x) =−((ln(x))/x) .
$${changement}\:{xt}\:={u}\:{give}\: \\ $$$${f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\frac{{u}}{{x}}\right)}{\left(\mathrm{1}+{u}\right)^{\mathrm{2}} }\:\frac{{du}}{{x}}\:=\frac{\mathrm{1}}{{x}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({u}\right)−{ln}\left({x}\right)}{\left(\mathrm{1}+{u}\right)^{\mathrm{2}} }{du} \\ $$$$=\frac{\mathrm{1}}{{x}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({u}\right)}{\left(\mathrm{1}+{u}\right)^{\mathrm{2}} }\:{du}\:−\frac{{ln}\left({x}\right)}{{x}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{du}}{\left(\mathrm{1}+{u}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{0}\:−\frac{{ln}\left({x}\right)}{{x}}\:\left[−\frac{\mathrm{1}}{\mathrm{1}+{u}}\right]_{\mathrm{0}} ^{+\infty} \:=−\frac{{ln}\left({x}\right)}{{x}}\:\Rightarrow{f}\left({x}\right)\:=−\frac{{ln}\left({x}\right)}{{x}}\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *