Menu Close

find-f-x-0-pi-4-ln-cost-xsint-dt-




Question Number 49938 by turbo msup by abdo last updated on 12/Dec/18
find  f(x)=∫_0 ^(π/4) ln(cost+xsint)dt
findf(x)=0π4ln(cost+xsint)dt
Commented by Abdo msup. last updated on 24/Dec/18
we have f^′ (x)=∫_0 ^(π/4)  ((sint)/(cost +x sint))dt  =_(tan((t/2))=u)     ∫_0 ^((√2)−1)      (((2u)/(1+u^2 ))/(((1−u^2 )/(1+u^2 )) +((2xu)/(1+u^2 )))) ((2du)/(1+u^2 ))  = ∫_0 ^((√2)−1)   ((4udu)/((1+u^2 )(1−u^2  +2xu)))  =−4 ∫_0 ^((√2)−1)    (u/((u^2  +1)(u^2 −2xu −1)))du let decompose  F(u) = (u/((u^2  +1)(u^2  −2xu −1)))  let u^2 −2xu−1   Δ^′ =x^2 +1>0 ⇒u_1 =x+(√(1+x^2 ))  u_2 =x−(√(1+x^2 ))  F(u)=((au+b)/(u^2  +1)) + (c/(u−u_1 )) +(d/(u−u_2 ))  c =lim_(u→u_1 ) (u−u_1 )F(u) =(u_1 /((u_1 ^2  +1)(u_1 −u_2 )))  =((x+(√(1+x^2 )))/(((x+(√(1+x^2 )))^2  +1)2(√(1+x^2 ))))  d =lim_(u→u_2 ) (u−u_2 )F(u) =(u_2 /((u_2 ^2  +1)(−2(√(1+x^2 )))))  =−(u_2 /(((x−(√(1+x^2 )))^2  +1)2(√(1+x^2 ))))   ...be continued...
wehavef(x)=0π4sintcost+xsintdt=tan(t2)=u0212u1+u21u21+u2+2xu1+u22du1+u2=0214udu(1+u2)(1u2+2xu)=4021u(u2+1)(u22xu1)duletdecomposeF(u)=u(u2+1)(u22xu1)letu22xu1Δ=x2+1>0u1=x+1+x2u2=x1+x2F(u)=au+bu2+1+cuu1+duu2c=limuu1(uu1)F(u)=u1(u12+1)(u1u2)=x+1+x2((x+1+x2)2+1)21+x2d=limuu2(uu2)F(u)=u2(u22+1)(21+x2)=u2((x1+x2)2+1)21+x2becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *