find-f-x-0-pi-4-ln-cost-xsint-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65445 by mathmax by abdo last updated on 30/Jul/19 findf(x)=∫0π4ln(cost+xsint)dt Commented by Prithwish sen last updated on 30/Jul/19 f(x)=π−228ln∣1+x2∣−1−22tan−1x+C Commented by mathmax by abdo last updated on 31/Jul/19 wehavef′(x)=∫0π4sintcost+xsintdtchangementtan(t2)=ugivef′(x)=∫02−12u1+u21−u21+u2+x2u1+u22du1+u2=∫02−14u(1+u2)(1−u2+2xu)du=−4∫02−1udu(u2+1)(u2−2xu−1)letdecomposeF(u)=u(u2+1)(u2−2xu−1)u2−2xu−1=0→Δ′=x2+1⇒u1=x+1+x2andu2=x−1+x2F(u)=u(u2+1)(u−u1)(u−u2)=au−u1+bu−u2+cu+du2+1a=u1(u12+1)(u1−u2)=x+1+x2(1+(x+1+x2)221+x2b=u2(1+u22)(u2−u1)=x−1+x2(1+(x−1+x2)2(−21+x2)limu→+∞uF(u)=0=a+b+c⇒c=−a−b⇒F(u)=au−u1+bu−u2+(−a−b)u+du2+1F(0)=0=−au1−bu2+d⇒d=au1+bu2⇒f′(x)=−4∫02−1(au−u1+bu−u2+cu+du2+1)du=−4[aln∣u−u1∣+bln∣u−u2∣]02−1−4{12∫02−12cu+2du2+1du}=−4{aln∣2−1−u1∣+bln∣2−1−u2∣−aln∣u1∣−bln∣u2∣}2{c[ln(u2+1)]02−1+2d[arctanu]02−1=….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-65443Next Next post: 10-x-x-1000-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.