find-f-x-0-pi-4-ln-sint-xcost-dt-x-real- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65133 by turbo msup by abdo last updated on 25/Jul/19 findf(x)=∫0π4ln(sint+xcost)dtxreal. Commented by mathmax by abdo last updated on 27/Jul/19 wehavef′(x)=∫0π4costsint+xcostdtchangementtan(t2)=ugivef′(x)=∫02−11−u21+u22u1+u2+x1−u21+u22du1+u2=2∫02−11−u2(1+u2)(2u+x−xu2)du=2∫02−1u2−1(u2+1)(xu2−2u−x)duletdecomposeF(u)=u2−1(u2+1)(xu2−2u−x)xu2−2u−x=0→Δ′=1+x2>0⇒u1(x)=1+1+x2xu2(x)=1−1+x2x⇒F(u)=u2−1x(u2+1)(u−u1)(u−u2)F(u)=au−u1+bu−u2+cu+du2+1a=limu→u1(u−u1)F(u)=u12−1x(u12+1)(u1−u2)b=limu→u2(u−u2)F(u)=u22−1x(u22+1)(u2−u1)limu→+∞uF(u)=0=a+b+c⇒c=−a−bF(0)=1x=−au1−bu2+d⇒d=1x+au1+bu2⇒F(u)=au−u1+bu−u2+−(a+b)u+1x+au1+bu2u2+1⇒f′(x)=2∫02−1(au−u1+bu−u2+−(a+b)u+λxu2+1)du=2a[ln∣u−u1∣]02−1+2b[ln∣u−u2∣]02−1−(a+b)[ln(u2+1)]02−1+2λx[arctanu]02−1=2aln∣2−1−u1u1∣+2bln∣2−1−u2u2∣−(a+b)ln((2−1)2+1)+2λxπ8⇒f(x)=2a∫ln∣2−1−u1(x)u1(x)∣dx+2b∫ln∣2−1−u2(x)u2(x)∣dx−(a+b)ln(4−22)x+π4∫λxdx+c….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-tarctan-2t-1-t-4-dt-Next Next post: Given-f-x-ax-b-g-x-px-q-and-f-x-lt-g-x-has-solution-1-lt-x-lt-5-Give-one-example-f-x-and-g-x-satisfy-the-condition- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.