Menu Close

find-f-x-0-pi-4-ln-sint-xcost-dt-x-real-




Question Number 65133 by turbo msup by abdo last updated on 25/Jul/19
find f(x)=∫_0 ^(π/4) ln(sint +xcost)dt  x real.
findf(x)=0π4ln(sint+xcost)dtxreal.
Commented by mathmax by abdo last updated on 27/Jul/19
we have f^′ (x) =∫_0 ^(π/4) ((cost)/(sint +xcost))dt changement tan((t/2)) =u give  f^′ (x) = ∫_0 ^((√2)−1)    (((1−u^2 )/(1+u^2 ))/(((2u)/(1+u^2 )) +x((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 )) =2∫_0 ^((√2)−1)   ((1−u^2 )/((1+u^2 )(2u +x−xu^2 )))du  =2 ∫_0 ^((√2)−1)   ((u^2 −1)/((u^2  +1)(xu^2 −2u −x)))du let decompose  F(u) =((u^2 −1)/((u^2  +1)(xu^2 −2u −x)))  xu^2 −2u−x =0→Δ^′  =1+x^2  >0 ⇒u_1 (x)=((1+(√(1+x^2 )))/x)  u_2 (x)=((1−(√(1+x^2 )))/x) ⇒F(u) =((u^2 −1)/(x(u^2  +1)(u−u_1 )(u−u_2 )))      F(u) =(a/(u−u_1 )) +(b/(u−u_2 )) +((cu +d)/(u^2  +1))  a =lim_(u→u_1 )   (u−u_(1 ) )F(u) =((u_1 ^2 −1)/(x(u_1 ^2 +1)(u_1 −u_2 )))  b =lim_(u→u_2 )     (u−u_2 )F(u) =((u_2 ^2 −1)/(x(u_2 ^2  +1)(u_2 −u_1 )))  lim_(u→+∞) uF(u) =0 =a+b +c ⇒c =−a−b  F(0) =(1/x) =−(a/u_1 ) −(b/u_2 ) +d ⇒d =(1/x) +(a/u_1 ) +(b/u_2 ) ⇒  F(u) =(a/(u−u_1 )) +(b/(u−u_2 )) +((−(a+b)u +(1/x)+(a/u_1 )+(b/u_2 ))/(u^2  +1)) ⇒  f^′ (x) =2 ∫_0 ^((√2)−1)   ((a/(u−u_1 )) +(b/(u−u_2 )) +((−(a+b)u +λ_x )/(u^(2 ) +1)) )du  =2a [ln∣u−u_1 ∣]_0 ^((√2)−1)   +2b [ln∣u−u_2 ∣]_0 ^((√2)−1)  −(a+b)[ln(u^2  +1)]_0 ^((√2)−1)   +2λ_x    [arctanu]_0 ^((√2)−1)   =2a ln∣(((√2)−1−u_1 )/u_1 )∣ +2b ln∣(((√2)−1−u_2 )/u_2 )∣−(a+b)ln( ((√2)−1)^2  +1)  +2λ_x (π/8) ⇒  f(x) =2a ∫  ln∣(((√2)−1−u_1 (x))/(u_1 (x)))∣dx +2b∫ ln∣(((√2)−1−u_2 (x))/(u_2 (x)))∣dx  −(a+b)ln(4−2(√2))x +(π/4) ∫  λ_x  dx  +c ....be continued....
wehavef(x)=0π4costsint+xcostdtchangementtan(t2)=ugivef(x)=0211u21+u22u1+u2+x1u21+u22du1+u2=20211u2(1+u2)(2u+xxu2)du=2021u21(u2+1)(xu22ux)duletdecomposeF(u)=u21(u2+1)(xu22ux)xu22ux=0Δ=1+x2>0u1(x)=1+1+x2xu2(x)=11+x2xF(u)=u21x(u2+1)(uu1)(uu2)F(u)=auu1+buu2+cu+du2+1a=limuu1(uu1)F(u)=u121x(u12+1)(u1u2)b=limuu2(uu2)F(u)=u221x(u22+1)(u2u1)limu+uF(u)=0=a+b+cc=abF(0)=1x=au1bu2+dd=1x+au1+bu2F(u)=auu1+buu2+(a+b)u+1x+au1+bu2u2+1f(x)=2021(auu1+buu2+(a+b)u+λxu2+1)du=2a[lnuu1]021+2b[lnuu2]021(a+b)[ln(u2+1)]021+2λx[arctanu]021=2aln21u1u1+2bln21u2u2(a+b)ln((21)2+1)+2λxπ8f(x)=2aln21u1(x)u1(x)dx+2bln21u2(x)u2(x)dx(a+b)ln(422)x+π4λxdx+c.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *