Question Number 65133 by turbo msup by abdo last updated on 25/Jul/19
$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sint}\:+{xcost}\right){dt} \\ $$$${x}\:{real}. \\ $$
Commented by mathmax by abdo last updated on 27/Jul/19
$${we}\:{have}\:{f}^{'} \left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{cost}}{{sint}\:+{xcost}}{dt}\:{changement}\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)\:={u}\:{give} \\ $$$${f}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\:\:\frac{\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\:+{x}\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\mathrm{2}\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\:\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{2}{u}\:+{x}−{xu}^{\mathrm{2}} \right)}{du} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\:\frac{{u}^{\mathrm{2}} −\mathrm{1}}{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\left({xu}^{\mathrm{2}} −\mathrm{2}{u}\:−{x}\right)}{du}\:{let}\:{decompose} \\ $$$${F}\left({u}\right)\:=\frac{{u}^{\mathrm{2}} −\mathrm{1}}{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\left({xu}^{\mathrm{2}} −\mathrm{2}{u}\:−{x}\right)} \\ $$$${xu}^{\mathrm{2}} −\mathrm{2}{u}−{x}\:=\mathrm{0}\rightarrow\Delta^{'} \:=\mathrm{1}+{x}^{\mathrm{2}} \:>\mathrm{0}\:\Rightarrow{u}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{{x}} \\ $$$${u}_{\mathrm{2}} \left({x}\right)=\frac{\mathrm{1}−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{{x}}\:\Rightarrow{F}\left({u}\right)\:=\frac{{u}^{\mathrm{2}} −\mathrm{1}}{{x}\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\left({u}−{u}_{\mathrm{1}} \right)\left({u}−{u}_{\mathrm{2}} \right)} \\ $$$$ \\ $$$$ \\ $$$${F}\left({u}\right)\:=\frac{{a}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}−{u}_{\mathrm{2}} }\:+\frac{{cu}\:+{d}}{{u}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${a}\:={lim}_{{u}\rightarrow{u}_{\mathrm{1}} } \:\:\left({u}−{u}_{\mathrm{1}\:} \right){F}\left({u}\right)\:=\frac{{u}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{1}}{{x}\left({u}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{1}\right)\left({u}_{\mathrm{1}} −{u}_{\mathrm{2}} \right)} \\ $$$${b}\:={lim}_{{u}\rightarrow{u}_{\mathrm{2}} } \:\:\:\:\left({u}−{u}_{\mathrm{2}} \right){F}\left({u}\right)\:=\frac{{u}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{1}}{{x}\left({u}_{\mathrm{2}} ^{\mathrm{2}} \:+\mathrm{1}\right)\left({u}_{\mathrm{2}} −{u}_{\mathrm{1}} \right)} \\ $$$${lim}_{{u}\rightarrow+\infty} {uF}\left({u}\right)\:=\mathrm{0}\:={a}+{b}\:+{c}\:\Rightarrow{c}\:=−{a}−{b} \\ $$$${F}\left(\mathrm{0}\right)\:=\frac{\mathrm{1}}{{x}}\:=−\frac{{a}}{{u}_{\mathrm{1}} }\:−\frac{{b}}{{u}_{\mathrm{2}} }\:+{d}\:\Rightarrow{d}\:=\frac{\mathrm{1}}{{x}}\:+\frac{{a}}{{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}_{\mathrm{2}} }\:\Rightarrow \\ $$$${F}\left({u}\right)\:=\frac{{a}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}−{u}_{\mathrm{2}} }\:+\frac{−\left({a}+{b}\right){u}\:+\frac{\mathrm{1}}{{x}}+\frac{{a}}{{u}_{\mathrm{1}} }+\frac{{b}}{{u}_{\mathrm{2}} }}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\:\left(\frac{{a}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}−{u}_{\mathrm{2}} }\:+\frac{−\left({a}+{b}\right){u}\:+\lambda_{{x}} }{{u}^{\mathrm{2}\:} +\mathrm{1}}\:\right){du} \\ $$$$=\mathrm{2}{a}\:\left[{ln}\mid{u}−{u}_{\mathrm{1}} \mid\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\:+\mathrm{2}{b}\:\left[{ln}\mid{u}−{u}_{\mathrm{2}} \mid\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:−\left({a}+{b}\right)\left[{ln}\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \\ $$$$+\mathrm{2}\lambda_{{x}} \:\:\:\left[{arctanu}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \\ $$$$=\mathrm{2}{a}\:{ln}\mid\frac{\sqrt{\mathrm{2}}−\mathrm{1}−{u}_{\mathrm{1}} }{{u}_{\mathrm{1}} }\mid\:+\mathrm{2}{b}\:{ln}\mid\frac{\sqrt{\mathrm{2}}−\mathrm{1}−{u}_{\mathrm{2}} }{{u}_{\mathrm{2}} }\mid−\left({a}+{b}\right){ln}\left(\:\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{1}\right) \\ $$$$+\mathrm{2}\lambda_{{x}} \frac{\pi}{\mathrm{8}}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\mathrm{2}{a}\:\int\:\:{ln}\mid\frac{\sqrt{\mathrm{2}}−\mathrm{1}−{u}_{\mathrm{1}} \left({x}\right)}{{u}_{\mathrm{1}} \left({x}\right)}\mid{dx}\:+\mathrm{2}{b}\int\:{ln}\mid\frac{\sqrt{\mathrm{2}}−\mathrm{1}−{u}_{\mathrm{2}} \left({x}\right)}{{u}_{\mathrm{2}} \left({x}\right)}\mid{dx} \\ $$$$−\left({a}+{b}\right){ln}\left(\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}\right){x}\:+\frac{\pi}{\mathrm{4}}\:\int\:\:\lambda_{{x}} \:{dx}\:\:+{c}\:….{be}\:{continued}…. \\ $$$$ \\ $$