Menu Close

find-f-x-0-x-t-2-1-arctan-t-dt-




Question Number 36422 by abdo.msup.com last updated on 01/Jun/18
find f(x)= ∫_0 ^x (t^2 +1)arctan(t)dt .
$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \left({t}^{\mathrm{2}} +\mathrm{1}\right){arctan}\left({t}\right){dt}\:. \\ $$
Commented by prof Abdo imad last updated on 04/Jun/18
let integrate by parts u^′ = t^2  +1 and v=arctant  f(x) = [ ((t^3 /3) +t)arctan(t)]_0 ^x  −∫_0 ^x  ((t^3 /3) +t) (dt/(1+t^2 ))  =((x^3 /3) +x)arctan(x) −(1/3) ∫_0 ^x    ((t^3  +3t)/(1+t^2 )) dt but  ∫_0 ^x   ((t^3  +3t)/(t^2  +1)) dt =∫_0 ^x   ((t(t^2  +1) +2t)/(t^2  +1))dt  =∫_0 ^x  tdt + ∫_0 ^x    ((2t)/(t^2  +1))dt  =(x^2 /2) +ln(x^2  +1)  so  f(x)= ((x^3 /3) +x)arctan(x) −(x^2 /6) −(1/3)ln(1+x^2 ) .
$${let}\:{integrate}\:{by}\:{parts}\:{u}^{'} =\:{t}^{\mathrm{2}} \:+\mathrm{1}\:{and}\:{v}={arctant} \\ $$$${f}\left({x}\right)\:=\:\left[\:\left(\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\:+{t}\right){arctan}\left({t}\right)\right]_{\mathrm{0}} ^{{x}} \:−\int_{\mathrm{0}} ^{{x}} \:\left(\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\:+{t}\right)\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\left(\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:+{x}\right){arctan}\left({x}\right)\:−\frac{\mathrm{1}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{t}^{\mathrm{3}} \:+\mathrm{3}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:{but} \\ $$$$\int_{\mathrm{0}} ^{{x}} \:\:\frac{{t}^{\mathrm{3}} \:+\mathrm{3}{t}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:{dt}\:=\int_{\mathrm{0}} ^{{x}} \:\:\frac{{t}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\:+\mathrm{2}{t}}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{{x}} \:{tdt}\:+\:\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{ln}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\:\:{so} \\ $$$${f}\left({x}\right)=\:\left(\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:+{x}\right){arctan}\left({x}\right)\:−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\:−\frac{\mathrm{1}}{\mathrm{3}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *