Question Number 57228 by maxmathsup by imad last updated on 31/Mar/19
$${find}\:{f}\left({x}\right)\:=\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{ln}\left(\mathrm{1}+{xt}\right)}{{t}^{\mathrm{2}} }\:{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$
Commented by maxmathsup by imad last updated on 12/Apr/19
$${by}\:{parts}\:\:{u}^{'} \:=\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:\:{and}\:{v}\:={ln}\left(\mathrm{1}+{xt}\right)\:\Rightarrow{f}\left({x}\right)\:=\left[−\frac{\mathrm{1}}{{t}}{ln}\left(\mathrm{1}+{xt}\right)\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$+\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{\mathrm{1}}{{t}}\:\frac{{x}}{\mathrm{1}+{xt}}{dt}\:={ln}\left(\mathrm{1}+{x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)\:\:+\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{x}}{{t}\left({xt}+\mathrm{1}\right)}\:{dt}\:\:{but} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{x}}{{t}\left({xt}\:+\mathrm{1}\right)}\:{dt}\:=_{{xt}\:={u}} \:\:\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\frac{{x}}{\frac{{u}}{{x}}\left({u}+\mathrm{1}\right)}\:\frac{{du}}{{x}}\:=\int_{{x}} ^{\mathrm{2}{x}} \:\:\:\frac{{x}}{{u}\left({u}+\mathrm{1}\right)}\:{dt} \\ $$$$={x}\:\int_{{x}} ^{\mathrm{2}{x}} \left(\frac{\mathrm{1}}{{u}}\:−\frac{\mathrm{1}}{{u}+\mathrm{1}}\right){du}\:={x}\:\left[{ln}\mid\frac{{u}}{{u}+\mathrm{1}}\mid\right]_{{x}} ^{\mathrm{2}{x}} \:={x}\:\left\{{ln}\left(\frac{\mathrm{2}{x}}{\mathrm{2}{x}+\mathrm{1}}\right)−{ln}\left(\frac{{x}}{{x}+\mathrm{1}}\right)\right\}\:\Rightarrow \\ $$$${f}\left({x}\right)\:={ln}\left(\mathrm{1}+{x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)\:+{x}\:{ln}\left(\frac{\mathrm{2}{x}}{\mathrm{2}{x}+\mathrm{1}}\right)−{xln}\left(\frac{{x}}{{x}+\mathrm{1}}\right)\:. \\ $$