Menu Close

find-f-x-1-2-ln-1-xt-t-2-dt-with-x-gt-0-




Question Number 57228 by maxmathsup by imad last updated on 31/Mar/19
find f(x) =∫_1 ^2  ((ln(1+xt))/t^2 ) dt  with x>0
findf(x)=12ln(1+xt)t2dtwithx>0
Commented by maxmathsup by imad last updated on 12/Apr/19
by parts  u^′  =(1/t^2 )  and v =ln(1+xt) ⇒f(x) =[−(1/t)ln(1+xt)]_1 ^2   + ∫_1 ^2   (1/t) (x/(1+xt))dt =ln(1+x)−(1/2)ln(1+2x)  +∫_1 ^2    (x/(t(xt+1))) dt  but  ∫_1 ^2   (x/(t(xt +1))) dt =_(xt =u)     ∫_x ^(2x)   (x/((u/x)(u+1))) (du/x) =∫_x ^(2x)    (x/(u(u+1))) dt  =x ∫_x ^(2x) ((1/u) −(1/(u+1)))du =x [ln∣(u/(u+1))∣]_x ^(2x)  =x {ln(((2x)/(2x+1)))−ln((x/(x+1)))} ⇒  f(x) =ln(1+x)−(1/2)ln(1+2x) +x ln(((2x)/(2x+1)))−xln((x/(x+1))) .
bypartsu=1t2andv=ln(1+xt)f(x)=[1tln(1+xt)]12+121tx1+xtdt=ln(1+x)12ln(1+2x)+12xt(xt+1)dtbut12xt(xt+1)dt=xt=ux2xxux(u+1)dux=x2xxu(u+1)dt=xx2x(1u1u+1)du=x[lnuu+1]x2x=x{ln(2x2x+1)ln(xx+1)}f(x)=ln(1+x)12ln(1+2x)+xln(2x2x+1)xln(xx+1).

Leave a Reply

Your email address will not be published. Required fields are marked *