Menu Close

find-f-x-if-f-x-f-x-2-2x-1-




Question Number 85236 by jagoll last updated on 20/Mar/20
find f(x) if   f ′(x) + f(x^2 ) = 2x+1
findf(x)iff(x)+f(x2)=2x+1
Commented by mathmax by abdo last updated on 20/Mar/20
its clear that f is polynomial let f(x)=Σ_(n=0) ^∞  a_n x^n   f^′ (x) =Σ_(n=1) ^∞  na_n x^(n−1)  =Σ_(n=0) ^∞  (n+1)a_(n+1) x^n   f(x^2 ) =Σ_(n=0) ^∞  a_n x^(2n)  ⇒  Σ_(n=0) ^∞  (n+1)a_(n+1) x^n  +Σ_(n=0) ^∞  a_n x^(2n)   =2x+1  changement of   indice  2n =p ⇒Σ_(n=0) ^∞ (n+1)a_n x^n  +Σ_(p=0) ^∞  a_([(p/2)])   x^p  =2x+1 ⇒  Σ_(n=0) ^∞ {(n+1)a_n  +a_([(n/2)]) }x^n  =2x+1 ⇒   { ((a_0 +a_0 =1)),((2a_1 +a_0 =2   and  (n+1)a_n  +a_([(n/2)])  =0  ∀n≥2 ⇒)) :}   { ((a_0 =(1/2)          and  a_n =−(a_([(n/2)]) /(n+1))   ∀n≥2)),((a_1 =(3/4))) :}  a_2 =−(a_1 /3)    ,  a_3 =−(a_1 /4) .....
itsclearthatfispolynomialletf(x)=n=0anxnf(x)=n=1nanxn1=n=0(n+1)an+1xnf(x2)=n=0anx2nn=0(n+1)an+1xn+n=0anx2n=2x+1changementofindice2n=pn=0(n+1)anxn+p=0a[p2]xp=2x+1n=0{(n+1)an+a[n2]}xn=2x+1{a0+a0=12a1+a0=2and(n+1)an+a[n2]=0n2{a0=12andan=a[n2]n+1n2a1=34a2=a13,a3=a14..
Answered by john santu last updated on 20/Mar/20
(df/dx) = 2x+1 − f(x^2 )  df = (2x+1)dx−f(x^2 )dx  ∫ df = ∫ (2x+1) dx − ∫ f(x^2 ) dx  f(x) = x^2 +x − ∫ f(x^2 ) dx   K = ∫ f(x^2 )dx  let u=x^2  ⇒du = 2x dx  dx = (du/(2(√u)))  K = ∫ f(u) × ((2du)/( (√u) ))
dfdx=2x+1f(x2)df=(2x+1)dxf(x2)dxdf=(2x+1)dxf(x2)dxf(x)=x2+xf(x2)dxK=f(x2)dxletu=x2du=2xdxdx=du2uK=f(u)×2duu
Commented by jagoll last updated on 20/Mar/20
how to solve ∫ f(u)× ((2du)/( (√u)))
howtosolvef(u)×2duu

Leave a Reply

Your email address will not be published. Required fields are marked *