Menu Close

find-f-x-if-f-x-f-x-2-2x-1-




Question Number 85236 by jagoll last updated on 20/Mar/20
find f(x) if   f ′(x) + f(x^2 ) = 2x+1
$$\mathrm{find}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{if}\: \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)\:=\:\mathrm{2x}+\mathrm{1} \\ $$
Commented by mathmax by abdo last updated on 20/Mar/20
its clear that f is polynomial let f(x)=Σ_(n=0) ^∞  a_n x^n   f^′ (x) =Σ_(n=1) ^∞  na_n x^(n−1)  =Σ_(n=0) ^∞  (n+1)a_(n+1) x^n   f(x^2 ) =Σ_(n=0) ^∞  a_n x^(2n)  ⇒  Σ_(n=0) ^∞  (n+1)a_(n+1) x^n  +Σ_(n=0) ^∞  a_n x^(2n)   =2x+1  changement of   indice  2n =p ⇒Σ_(n=0) ^∞ (n+1)a_n x^n  +Σ_(p=0) ^∞  a_([(p/2)])   x^p  =2x+1 ⇒  Σ_(n=0) ^∞ {(n+1)a_n  +a_([(n/2)]) }x^n  =2x+1 ⇒   { ((a_0 +a_0 =1)),((2a_1 +a_0 =2   and  (n+1)a_n  +a_([(n/2)])  =0  ∀n≥2 ⇒)) :}   { ((a_0 =(1/2)          and  a_n =−(a_([(n/2)]) /(n+1))   ∀n≥2)),((a_1 =(3/4))) :}  a_2 =−(a_1 /3)    ,  a_3 =−(a_1 /4) .....
$${its}\:{clear}\:{that}\:{f}\:{is}\:{polynomial}\:{let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} \\ $$$${f}^{'} \left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{na}_{{n}} {x}^{{n}−\mathrm{1}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){a}_{{n}+\mathrm{1}} {x}^{{n}} \\ $$$${f}\left({x}^{\mathrm{2}} \right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{\mathrm{2}{n}} \:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){a}_{{n}+\mathrm{1}} {x}^{{n}} \:+\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{\mathrm{2}{n}} \:\:=\mathrm{2}{x}+\mathrm{1}\:\:{changement}\:{of}\: \\ $$$${indice}\:\:\mathrm{2}{n}\:={p}\:\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \left({n}+\mathrm{1}\right){a}_{{n}} {x}^{{n}} \:+\sum_{{p}=\mathrm{0}} ^{\infty} \:{a}_{\left[\frac{{p}}{\mathrm{2}}\right]} \:\:{x}^{{p}} \:=\mathrm{2}{x}+\mathrm{1}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \left\{\left({n}+\mathrm{1}\right){a}_{{n}} \:+{a}_{\left[\frac{{n}}{\mathrm{2}}\right]} \right\}{x}^{{n}} \:=\mathrm{2}{x}+\mathrm{1}\:\Rightarrow \\ $$$$\begin{cases}{{a}_{\mathrm{0}} +{a}_{\mathrm{0}} =\mathrm{1}}\\{\mathrm{2}{a}_{\mathrm{1}} +{a}_{\mathrm{0}} =\mathrm{2}\:\:\:{and}\:\:\left({n}+\mathrm{1}\right){a}_{{n}} \:+{a}_{\left[\frac{{n}}{\mathrm{2}}\right]} \:=\mathrm{0}\:\:\forall{n}\geqslant\mathrm{2}\:\Rightarrow}\end{cases} \\ $$$$\begin{cases}{{a}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:{and}\:\:{a}_{{n}} =−\frac{{a}_{\left[\frac{{n}}{\mathrm{2}}\right]} }{{n}+\mathrm{1}}\:\:\:\forall{n}\geqslant\mathrm{2}}\\{{a}_{\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{4}}}\end{cases} \\ $$$${a}_{\mathrm{2}} =−\frac{{a}_{\mathrm{1}} }{\mathrm{3}}\:\:\:\:,\:\:{a}_{\mathrm{3}} =−\frac{{a}_{\mathrm{1}} }{\mathrm{4}}\:….. \\ $$
Answered by john santu last updated on 20/Mar/20
(df/dx) = 2x+1 − f(x^2 )  df = (2x+1)dx−f(x^2 )dx  ∫ df = ∫ (2x+1) dx − ∫ f(x^2 ) dx  f(x) = x^2 +x − ∫ f(x^2 ) dx   K = ∫ f(x^2 )dx  let u=x^2  ⇒du = 2x dx  dx = (du/(2(√u)))  K = ∫ f(u) × ((2du)/( (√u) ))
$$\frac{\mathrm{df}}{\mathrm{dx}}\:=\:\mathrm{2x}+\mathrm{1}\:−\:\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right) \\ $$$$\mathrm{df}\:=\:\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{dx}−\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\int\:\mathrm{df}\:=\:\int\:\left(\mathrm{2x}+\mathrm{1}\right)\:\mathrm{dx}\:−\:\int\:\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{dx} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}\:−\:\int\:\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{dx}\: \\ $$$$\mathrm{K}\:=\:\int\:\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\mathrm{let}\:\mathrm{u}=\mathrm{x}^{\mathrm{2}} \:\Rightarrow\mathrm{du}\:=\:\mathrm{2x}\:\mathrm{dx} \\ $$$$\mathrm{dx}\:=\:\frac{\mathrm{du}}{\mathrm{2}\sqrt{\mathrm{u}}} \\ $$$$\mathrm{K}\:=\:\int\:\mathrm{f}\left(\mathrm{u}\right)\:×\:\frac{\mathrm{2du}}{\:\sqrt{\mathrm{u}}\:}\: \\ $$$$ \\ $$
Commented by jagoll last updated on 20/Mar/20
how to solve ∫ f(u)× ((2du)/( (√u)))
$$\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\int\:{f}\left({u}\right)×\:\frac{\mathrm{2}{du}}{\:\sqrt{{u}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *