Menu Close

find-f-x-pi-4-pi-3-cosxdx-2cos-2-x-sin-2-x-1-




Question Number 42801 by maxmathsup by imad last updated on 02/Sep/18
find f(x) = ∫_(π/4) ^(π/3)     ((cosxdx)/(2cos^2 x +sin^2 x +1))
findf(x)=π4π3cosxdx2cos2x+sin2x+1
Commented by maxmathsup by imad last updated on 04/Sep/18
let I = ∫_(π/4) ^(π/3)     ((cosxdx)/(2(1−sin^2 x) +sin^2 x +1)) changement sinx =t give  I = ∫_(1/( (√2))) ^((√3)/2)      (dt/(2(1−t^2 )+t^2  +1)) = ∫_(1/( (√2))) ^((√3)/2)    (dt/(3 −t^2 )) =∫_(1/( (√2))) ^((√3)/2)     (dt/(((√3)−t)((√3)+t)))dt  = (1/(2(√3))) ∫_(1/( (√2))) ^((√3)/2)    {(1/( (√3)−t)) +(1/( (√3)+t))}dt =(1/(2(√3))) [ln∣(((√3)+t)/( (√3)−t))∣]_(1/( (√2))) ^((√3)/2)   = (1/(2(√3))){ ln∣(((√3)+((√3)/2))/( (√3)−((√3)/2)))∣  −ln∣(((√3)+(1/( (√2))))/( (√3)−(1/( (√2)))))∣} = (1/(2(√3))){ ln(((3(√3))/( (√3))))−ln((((√6)+1)/( (√6)−1)))} =(1/(2(√3))){ln(3)−ln(((1+(√6))/(−1+(√6))))} .
letI=π4π3cosxdx2(1sin2x)+sin2x+1changementsinx=tgiveI=1232dt2(1t2)+t2+1=1232dt3t2=1232dt(3t)(3+t)dt=1231232{13t+13+t}dt=123[ln3+t3t]1232=123{ln3+32332ln3+12312}=123{ln(333)ln(6+161)}=123{ln(3)ln(1+61+6)}.
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18
∫_(1/( (√2))) ^((√3)/2)  (dt/(2(1−t^2 )+t^2 +1))  t=sinx  dt=cosxdx  ∫_(1/( (√2))) ^((√3)/2)  (dt/(3−t^2 ))=∣(1/(2(√3)))ln(((t+(√3))/(t−(√3))))∣_(1/( (√2))) ^((√3)/2)   (1/(2(√3))){ln∣(((((√3)/2)+(√3))/(((√3)/2)−(√3))))∣−ln∣((((1/( (√2)))+(√3))/((1/( (√2)))−(√3))))∣}  =(1/(2(√3))){ln∣(((3/2)/(−(1/2))))∣−ln∣(((1+(√6))/(1−(√6))))∣}  =(1/(2(√3))){ln∣−3∣−ln∣(((1+(√6))/(1−(√6))))}    use formula ∫(dx/(a^2 −x^2 ))=(1/(2a))∫((a+x+a−x)/((a+x)(a−x)))dx  (1/(2a))[∫(dx/(a−x))+∫(dx/(a+x))]  (1/(2a))[∫(dx/(x+a))−∫(dx/(x−a))]=(1/(2a))ln(((x+a)/(x−a)))
1232dt2(1t2)+t2+1t=sinxdt=cosxdx1232dt3t2=∣123ln(t+3t3)1232123{ln(32+3323)ln(12+3123)}=123{ln(3212)ln(1+616)}=123{ln3ln(1+616)}useformuladxa2x2=12aa+x+ax(a+x)(ax)dx12a[dxax+dxa+x]12a[dxx+adxxa]=12aln(x+axa)

Leave a Reply

Your email address will not be published. Required fields are marked *