find-f-x-y-0-pi-2-ln-x-y-sin-d-with-y-lt-x-2-find-f-2-3-3-find-f-2-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 45600 by maxmathsup by imad last updated on 14/Oct/18 findf(x,y)=∫0π2ln(x+ysinθ)dθwith∣y∣<∣x∣2)findf(2,3)3)findf(2,3). Commented by maxmathsup by imad last updated on 15/Oct/18 1)wehave∂f∂x(x,y)=∫0π2dθx+ysinθchangementtan(θ2)=tgive∂f∂x(x,y)=∫012dt(1+t2)(x+y2t1+t2)=∫012dt(1+t2)x+2yt=∫012dtx+xt2+2yt=∫012dtxt2+2yt+xrootsofp(x)=xt2+2yt+xΔ′=y2−x2<0⇒norootsbutxt2+2yt+x=x(t2+2yxt+1)=x((t+yx)2+1−y2x2)=x{(t+yx)2+x2−y2x2}changementt+yx=x2−y2∣x∣ugive∫012dtxt2+2yt+x=∫∣x∣xyx2−y2∣x∣xx+yx2−y22xx2−y2x2{1+u2}x2−y2∣x∣du=∫yξ(x)x2−y2(x+y)ξ(x)x2−y22ξ(x)x2−y2du1+u2=2ξ(x)x2−y2{arctan((x+y)ξ(x)x2−y2)−arctan(yξ(x)x2−y2)}=∂f∂x(x,y)⇒f(x,y)=2ξ(x)∫1x2−y2arctan((x+y)ξ(x)x2−y2)dx−2ξ(x)∫1x2−y2arctan(yξ(x)x2−y2)dx+kξ(x)=1ifx>0andξ(x)=−1ifx<0…becontinued… Commented by maxmathsup by imad last updated on 15/Oct/18 2)f(2,3)=∫0π2ln(2+3sinθ)dθf(2,3)=∫0π2ln(3(23+sinθ))dθ=π2ln(3)+∫0π2ln(23+sinθ)dθletfindφ(x)=∫0π2ln(x+sinθ)dθwith∣x∣<1wehaveφ′(x)=∫0π2dθx+sinθ=tan(θ2)=t∫011x+2t1+t22dt1+t2=∫012dtx(1+t2)+2t=∫012dtx+xt2+2t=∫012dtxt2+2t+xΔ′=1−x2>0⇒t1=−1+1−x2xandt2=−1−1−x2x(wetakex≠0)F(t)=1xt2+2t+x=1x(t−t1)(t−t2)=1xx21−x2{1t−t1−1t−t2}=121−x2{1t−t1−1t−t2}⇒∫01F(t)dt=121−x2[ln∣t−t1t−t2∣]01=121−x2{ln∣1−t11−t2∣−ln∣t1t2∣}=121−x2ln∣1−t11−t2.t2t1∣=121−x2ln∣t2−t1t2t1−t1t2∣=121−x2ln∣−1−1−x2x−1−1+1−x2x−1∣=121−x2ln∣1+1+1−x2x1−−1+1−x2x∣=121−x2ln∣x+1+1−x2x+1−1−x2∣⇒φ′(x)=11−x2ln(x+1+1−x2x+1−1−x2)⇒φ(x)=∫0x11−u2ln(u+1+1−u2u+1−1−u2)du+cc=φ(0)=∫0π2ln(sinθ)dθ=−π2ln(2)⇒φ(x)=∫0x11−u2ln(u+1+1−u2u+1−1−u2)du−π2ln(2)…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-calculate-A-n-0-n-1-x-2x-1-x-dx-2-find-lim-n-A-n-3-study-the-serie-A-n-Next Next post: Question-45601 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.