Menu Close

find-f-x-y-0-pi-2-ln-x-y-sin-d-with-y-lt-x-2-find-f-2-3-3-find-f-2-3-




Question Number 45600 by maxmathsup by imad last updated on 14/Oct/18
find f(x,y) =∫_0 ^(π/2) ln(x+y sinθ)dθ  with  ∣y∣<∣x∣  2) find f(2,3)  3)find f((√2),(√3)) .
findf(x,y)=0π2ln(x+ysinθ)dθwithy∣<∣x2)findf(2,3)3)findf(2,3).
Commented by maxmathsup by imad last updated on 15/Oct/18
1) we have (∂f/∂x)(x,y) =∫_0 ^(π/2)    (dθ/(x+ysinθ)) changement tan((θ/2))=t give  (∂f/∂x)(x,y) = ∫_0 ^1       ((2dt)/((1+t^2 )(x+y((2t)/(1+t^2 ))))) =∫_0 ^1    ((2dt)/((1+t^2 )x +2yt))  =∫_0 ^1     ((2dt)/(x +xt^2  +2yt)) =∫_0 ^1    ((2dt)/(xt^2  +2yt +x))  roots of p(x)=xt^2  +2yt +x  Δ^′ =y^2 −x^2  <0 ⇒no roots but xt^2  +2yt +x  =x(t^2  +2(y/x)t +1)  =x(  (t+(y/x))^2  +1−(y^2 /x^2 )) =x{ (t+(y/x))^2  +((x^2 −y^2 )/x^2 )} changement   t+(y/x) =((√(x^2 −y^2 ))/(∣x∣)) u give  ∫_0 ^1   ((2dt)/(xt^2  +2yt +x)) = ∫_(((∣x∣)/x)(y/( (√(x^2 −y^2 ))))) ^(((∣x∣)/x)((x+y)/( (√(x^2 −y^2 )))))    (2/(x((x^2 −y^2 )/x^2 ){1+u^2 }))((√(x^2 −y^2 ))/(∣x∣))du  =∫_((yξ(x))/( (√(x^2 −y^2 )))) ^(((x+y)ξ(x))/( (√(x^2 −y^2 ))))    (2/(ξ(x)(√(x^2 −y^2 )))) (du/(1+u^2 ))  =(2/(ξ(x)(√(x^2 −y^2 )))) { arctan((((x+y)ξ(x))/( (√(x^2 −y^2 )))))−arctan(((yξ(x))/( (√(x^2 −y^2 )))))}=(∂f/∂x)(x,y) ⇒  f(x,y) =(2/(ξ(x))) ∫   (1/( (√(x^2 −y^2 )))) arctan((((x+y)ξ(x))/( (√(x^2 −y^2 )))))dx−(2/(ξ(x))) ∫(1/( (√(x^2 −y^2 ))))arctan(((yξ(x))/( (√(x^2 −y^2 )))))dx+k  ξ(x)=1 if x>0 and ξ(x)=−1 if x<0 ...be continued...
1)wehavefx(x,y)=0π2dθx+ysinθchangementtan(θ2)=tgivefx(x,y)=012dt(1+t2)(x+y2t1+t2)=012dt(1+t2)x+2yt=012dtx+xt2+2yt=012dtxt2+2yt+xrootsofp(x)=xt2+2yt+xΔ=y2x2<0norootsbutxt2+2yt+x=x(t2+2yxt+1)=x((t+yx)2+1y2x2)=x{(t+yx)2+x2y2x2}changementt+yx=x2y2xugive012dtxt2+2yt+x=xxyx2y2xxx+yx2y22xx2y2x2{1+u2}x2y2xdu=yξ(x)x2y2(x+y)ξ(x)x2y22ξ(x)x2y2du1+u2=2ξ(x)x2y2{arctan((x+y)ξ(x)x2y2)arctan(yξ(x)x2y2)}=fx(x,y)f(x,y)=2ξ(x)1x2y2arctan((x+y)ξ(x)x2y2)dx2ξ(x)1x2y2arctan(yξ(x)x2y2)dx+kξ(x)=1ifx>0andξ(x)=1ifx<0becontinued
Commented by maxmathsup by imad last updated on 15/Oct/18
2)f(2,3)=∫_0 ^(π/2) ln(2+3sinθ)dθ    f(2,3)= ∫_0 ^(π/2) ln(3((2/3)+sinθ))dθ =(π/2)ln(3) +∫_0 ^(π/2) ln((2/3)+sinθ)dθ  let find ϕ(x)=∫_0 ^(π/2) ln(x+sinθ)dθ  with ∣x∣<1  we have  ϕ^′ (x) = ∫_0 ^(π/2)   (dθ/(x+sinθ)) =_(tan((θ/2))=t)     ∫_0 ^1     (1/(x+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^1    ((2dt)/(x(1+t^2 ) +2t))  = ∫_0 ^1    ((2dt)/(x +xt^2  +2t)) = ∫_0 ^1    ((2dt)/(xt^2  +2t +x))  Δ^′ =1−x^2 >0  ⇒t_1 =((−1+(√(1−x^2 )))/x)  and t_2 =((−1−(√(1−x^2 )))/x)  (we take x≠0)  F(t)=(1/(xt^2  +2t +x)) =(1/(x(t−t_1 )(t−t_2 ))) =(1/x)(x/(2(√(1−x^2 )))){ (1/(t−t_1 )) −(1/(t−t_2 ))}  =(1/(2(√(1−x^2 )))){ (1/(t−t_1 )) −(1/(t−t_2 ))} ⇒∫_0 ^1 F(t)dt=(1/(2(√(1−x^2 ))))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^1   =(1/(2(√(1−x^2 )))){ ln∣((1−t_1 )/(1−t_2 ))∣−ln∣(t_1 /t_2 )∣}=(1/(2(√(1−x^2 ))))ln∣((1−t_1 )/(1−t_2 )).(t_2 /t_1 )∣  =(1/(2(√(1−x^2 ))))ln∣((t_2 −t_1 t_2 )/(t_1 −t_1 t_2 ))∣ =(1/(2(√(1−x^2 ))))ln∣ ((((−1−(√(1−x^2 )))/x) −1)/(((−1+(√(1−x^2 )))/x)−1))∣  =(1/(2(√(1−x^2 ))))ln∣ ((1+((1+(√(1−x^2 )))/x))/(1−((−1+(√(1−x^2 )))/x)))∣=(1/(2(√(1−x^2 ))))ln∣ ((x+1+(√(1−x^2 )))/(x+1−(√(1−x^2 ))))∣ ⇒  ϕ^′ (x) =(1/( (√(1−x^2 ))))ln(((x+1+(√(1−x^2 )))/(x+1−(√(1−x^2 ))))) ⇒  ϕ(x) =∫_0 ^x    (1/( (√(1−u^2 ))))ln(((u+1+(√(1−u^2 )))/(u+1−(√(1−u^2 )))))du +c  c=ϕ(0)=∫_0 ^(π/2) ln(sinθ)dθ =−(π/2)ln(2) ⇒  ϕ(x) =∫_0 ^x   (1/( (√(1−u^2 ))))ln(((u+1+(√(1−u^2 )))/(u+1−(√(1−u^2 )))))du−(π/2)ln(2) ...be continued...
2)f(2,3)=0π2ln(2+3sinθ)dθf(2,3)=0π2ln(3(23+sinθ))dθ=π2ln(3)+0π2ln(23+sinθ)dθletfindφ(x)=0π2ln(x+sinθ)dθwithx∣<1wehaveφ(x)=0π2dθx+sinθ=tan(θ2)=t011x+2t1+t22dt1+t2=012dtx(1+t2)+2t=012dtx+xt2+2t=012dtxt2+2t+xΔ=1x2>0t1=1+1x2xandt2=11x2x(wetakex0)F(t)=1xt2+2t+x=1x(tt1)(tt2)=1xx21x2{1tt11tt2}=121x2{1tt11tt2}01F(t)dt=121x2[lntt1tt2]01=121x2{ln1t11t2lnt1t2}=121x2ln1t11t2.t2t1=121x2lnt2t1t2t1t1t2=121x2ln11x2x11+1x2x1=121x2ln1+1+1x2x11+1x2x∣=121x2lnx+1+1x2x+11x2φ(x)=11x2ln(x+1+1x2x+11x2)φ(x)=0x11u2ln(u+1+1u2u+11u2)du+cc=φ(0)=0π2ln(sinθ)dθ=π2ln(2)φ(x)=0x11u2ln(u+1+1u2u+11u2)duπ2ln(2)becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *