Menu Close

find-find-I-1-3-x-2-x-2-4x-2-dx-




Question Number 29162 by abdo imad last updated on 04/Feb/18
find  find I= ∫_1 ^3     ((∣x−2∣)/((x^2 −4x)^2 ))dx .
findfindI=13x2(x24x)2dx.
Commented by abdo imad last updated on 06/Feb/18
the chasles relation give I=∫_1 ^2 ((−x+2)/((x^2 −4x)^2 ))dx +∫_2 ^3  ((x−2)/((x^2 −4x)^2 ))dx  ∫_1 ^2  ((−x +2)/((x^2 −4x)^2 ))dx=−(1/2)∫_1 ^2 ((2x−4)/((x^2 −4x)^2 ))dx  =(1/2)[ (1/(x^2 −4x))]_1 ^2 =(1/2)(−(1/4) +(1/3))=(1/(24))  and  ∫_2 ^3   ((x−2)/((x^2 −4x)^2 ))dx=(1/2) ∫_1 ^3   ((2x−4)/((x^2 −4x)^2 ))dx  =−(1/2)[ (1/(x^2 −4x))]_1 ^3 =−(1/2)( −(1/3) +(1/3))=0  ⇒ I=(1/(24)) .
thechaslesrelationgiveI=12x+2(x24x)2dx+23x2(x24x)2dx12x+2(x24x)2dx=12122x4(x24x)2dx=12[1x24x]12=12(14+13)=124and23x2(x24x)2dx=12132x4(x24x)2dx=12[1x24x]13=12(13+13)=0I=124.

Leave a Reply

Your email address will not be published. Required fields are marked *