Menu Close

find-for-arbitrary-0-the-limit-lim-n-1-2-3-n-n-n-1-




Question Number 169166 by infinityaction last updated on 25/Apr/22
        find for arbitrary α≥0 the limit      lim_(n→+∞)  (((1^α +2^α +3^α +......n^α )/n^α )−(n/(1+α)))
findforarbitraryα0thelimitlimn+(1α+2α+3α+nαnαn1+α)
Commented by safojontoshtemirov last updated on 25/Apr/22
(1/2)
12
Commented by infinityaction last updated on 25/Apr/22
sir solution
sirsolution
Commented by infinityaction last updated on 25/Apr/22
sir dont put any value of α
sirdontputanyvalueofα
Commented by infinityaction last updated on 25/Apr/22
i want solution in general form
iwantsolutioningeneralform
Answered by aleks041103 last updated on 25/Apr/22
∫_1 ^(n+1) x^α dx=(((n+1)^(α+1) −1)/(α+1))≈(Σ_(k=1) ^n k^α )+Σ_(k=1) ^n ((1/2)((k+1)^α −k^α ))=  =(Σ_(k=1) ^n k^α )+(1/2)((n+1)^α −1)  ⇒Σ_(k=1) ^n k^α ≈(((n+1)/(α+1))−(1/2))(n+1)^α +(1/2)−(1/(α+1))  ⇒lim_(n→∞) ((((n+1)/(α+1))−(1/2))(1+(1/n))^α −(n/(1+α))+((1/2)−(1/(α+1)))(1/n^α ))=  =lim_(n→∞) ((1+(1/n))^α ((1/(α+1))−(1/2))+(n/(α+1))((1+(1/n))^α −1))=  =(1/(α+1))−(1/2)+(α/(α+1))=(1/2) for α>0  for α=0  ⇒lim=((1+1+...+1)/1)−n=0  ⇒lim_(n→∞) (((1^α +...+n^α )/n^α )−(n/(α+1)))= { ((0, α=0)),((1/2, α>0)) :}
1n+1xαdx=(n+1)α+11α+1(nk=1kα)+nk=1(12((k+1)αkα))==(nk=1kα)+12((n+1)α1)nk=1kα(n+1α+112)(n+1)α+121α+1limn((n+1α+112)(1+1n)αn1+α+(121α+1)1nα)==limn((1+1n)α(1α+112)+nα+1((1+1n)α1))==1α+112+αα+1=12forα>0forα=0lim=1+1++11n=0limn(1α++nαnαnα+1)={0,α=01/2,α>0
Commented by infinityaction last updated on 25/Apr/22
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *