Menu Close

find-forier-series-to-half-rang-of-f-x-sinx-0-lt-x-lt-pi-and-prove-that-n-1-1-4n-2-1-1-2-




Question Number 146758 by tabata last updated on 15/Jul/21
find forier series to half rang of   f(x)=sinx  ,0<x<π and prove that  Σ_(n=1) ^∞ (1/(4n^2 −1))=(1/2)
findforierseriestohalfrangoff(x)=sinx,0<x<πandprovethatn=114n21=12
Answered by Olaf_Thorendsen last updated on 15/Jul/21
S_N  = Σ_(n=1) ^N (1/(4n^2 −1)) = (1/2)Σ_(n=1) ^N ((1/(2n−1))−(1/(2n+1)))  S_N  = (1/2)Σ_(n=1) ^N (1−(1/(2N+1)))  ⇒ S_∞  = (1/2)
SN=Nn=114n21=12Nn=1(12n112n+1)SN=12Nn=1(112N+1)S=12
Commented by tabata last updated on 15/Jul/21
and forier sir ?
andforiersir?
Answered by Olaf_Thorendsen last updated on 15/Jul/21
  f(x) = sinx, 0<x<π  a_0  = (2/π)∫_0 ^π f(x) dx = (2/π)∫_0 ^π sinx dx  a_0  = (2/π)[−cosx]_0 ^π  = (4/π)  a_1  = (2/π)∫_0 ^π sinxcos dx = (1/π)∫_0 ^π sin(2x)dx  a_1  = 0  n > 1 :  a_n  = (2/π)∫_0 ^π f(x)cos(((nπx)/π)) dx  a_n  = (2/π)∫_0 ^π sinxcos(nx) dx  a_n  = (2/π)∫_0 ^π (1/2)[sin((n+1)x)−sin((n−1)x)] dx  a_n  = (2/π)∫_0 ^π (1/2)[sin((n+1)x)−sin((n−1)x)] dx  a_n  = (1/π)[−((cos((n+1)x))/(n+1))+((cos((n−1)x))/(n−1))]_0 ^π   a_n  = (1/π)[−(((−1)^(n+1) )/(n+1))+(((−1)^(n−1) )/(n−1))+(1/(n+1))−(1/(n−1))]  a_n  = −(2/(π(n^2 −1)))[(−1)^n +1]  sinx = (a_0 /2)+a_1 cosx+Σ_(n=2) ^∞ a_n cos(nx)  sinx = (2/π)−(2/π)Σ_(n=2) ^∞ (((−1)^n +1)/(n^2 −1))cos(nx)  n = 2m  sinx = (2/π)−(4/π)Σ_(m=1) ^∞ (1/(4m^2 −1))cos(2mx)  x = 0 :  0 = (2/π)−(4/π)Σ_(m=1) ^∞ (1/(4m^2 −1))  Σ_(m=1) ^∞ (1/(4m^2 −1)) = (1/2)
f(x)=sinx,0<x<πa0=2π0πf(x)dx=2π0πsinxdxa0=2π[cosx]0π=4πa1=2π0πsinxcosdx=1π0πsin(2x)dxa1=0n>1:an=2π0πf(x)cos(nπxπ)dxan=2π0πsinxcos(nx)dxan=2π0π12[sin((n+1)x)sin((n1)x)]dxan=2π0π12[sin((n+1)x)sin((n1)x)]dxan=1π[cos((n+1)x)n+1+cos((n1)x)n1]0πan=1π[(1)n+1n+1+(1)n1n1+1n+11n1]an=2π(n21)[(1)n+1]sinx=a02+a1cosx+n=2ancos(nx)sinx=2π2πn=2(1)n+1n21cos(nx)n=2msinx=2π4πm=114m21cos(2mx)x=0:0=2π4πm=114m21m=114m21=12

Leave a Reply

Your email address will not be published. Required fields are marked *