find-from-fourier-series-an-expression-for-log-tanx- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 115300 by mathdave last updated on 24/Sep/20 findfromfourierseriesanexpressionforlog(tanx) Answered by Bird last updated on 25/Sep/20 ln(tanx)=ln(sinxcosx)=ln(sinx)−ln(cosx)=u(x)−v(x)u(x)=ln(eix−e−ix2i)=ln(eix(1−e−2ix))−ln(2i)=ix+ln(1−e−2ix)−ln(2)−iπ2wehaveddtln(1−t)=−11−t=−∑n=0∞tn⇒ln(1−t)=−∑n=0∞tn+1n+1=−∑n=1∞tnn⇒ln(1−e−2ix)=−∑n=1∞e−2inxn=−∑n=1∞1n(cos(2nx)−isin(2nx))⇒u(x)=i(x−π2)−∑n=1∞cos(2nx)n+i∑n=1∞sin(2nx)nbutu(x)∈R⇒ln(sinx)=−∑n=1∞cos(2nx)nandx−π2+∑n=1∞sin(2nx)nv(x)=ln(cosx)=ln(sin(π2−x))=−∑n=1∞cos(2n(π2−x))n=−∑n=1∞cos(nπ−2nx)n=−∑n=1∞(−1)ncos(2nx)nln(tanx)=u(x)−v(x)=−∑n=1∞cos(2nx)n+∑n=1∞(−1)nncos(2nx)=∑n=1∞(−1)n−1ncos(2nx)wechangenby2n+1wegetln(tanx)=−2∑n=0∞12n+1cos(2(2n+1)x)ln(tanx)=−2∑n=0∞cos((4n+2)x)2n+1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-all-x-R-that-are-solutions-to-this-question-0-1-x-x-2-2-x-x-2-Mastermind-Next Next post: Find-the-derivatives-f-x-of-the-following-function-with-respect-to-x-f-x-Sin-pi-Sinx-pi-Cosx-Mastermind- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.