Menu Close

find-from-fourier-series-an-expression-for-log-tanx-




Question Number 115300 by mathdave last updated on 24/Sep/20
find from fourier series an  expression for  log(tanx)
findfromfourierseriesanexpressionforlog(tanx)
Answered by Bird last updated on 25/Sep/20
ln(tanx)=ln(((sinx)/(cosx)))=ln(sinx)  −ln(cosx) =u(x)−v(x)  u(x)=ln(((e^(ix) −e^(−ix) )/(2i)))  =ln(e^(ix) (1−e^(−2ix) ))−ln(2i)  =ix+ln(1−e^(−2ix) )−ln(2)−((iπ)/2)  we have (d/dt)ln(1−t)=−(1/(1−t))  =−Σ_(n=0) ^∞  t^n  ⇒ln(1−t)=−Σ_(n=0) ^∞  (t^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (t^n /n) ⇒  ln(1−e^(−2ix) ) =−Σ_(n=1) ^∞  (e^(−2inx) /n)  =−Σ_(n=1) ^∞  (1/n)(cos(2nx)−isin(2nx))  ⇒u(x)=i(x−(π/2))−Σ_(n=1) ^∞  ((cos(2nx))/n)  +iΣ_(n=1) ^∞ ((sin(2nx))/n) but u(x)∈R ⇒  ln(sinx) =−Σ_(n=1) ^∞  ((cos(2nx))/n)  and x−(π/2) +Σ_(n=1) ^∞  ((sin(2nx))/n)  v(x)=ln(cosx) =ln(sin((π/2)−x))  =−Σ_(n=1) ^∞  ((cos(2n((π/2)−x)))/n)  =−Σ_(n=1) ^∞  ((cos(nπ−2nx))/n)  =−Σ_(n=1) ^∞ (((−1)^n cos(2nx))/n)  ln(tanx)=u(x)−v(x)  =−Σ_(n=1) ^∞  ((cos(2nx))/n) +Σ_(n=1) ^∞ (((−1)^n )/n)cos(2nx)  =Σ_(n=1) ^∞ (((−1)^n −1)/n) cos(2nx)  we change n by 2n+1 we get  ln(tanx) =−2Σ_(n=0) ^∞ (1/(2n+1))cos(2(2n+1)x)  ln(tanx)=−2Σ_(n=0) ^∞  ((cos((4n+2)x))/(2n+1))
ln(tanx)=ln(sinxcosx)=ln(sinx)ln(cosx)=u(x)v(x)u(x)=ln(eixeix2i)=ln(eix(1e2ix))ln(2i)=ix+ln(1e2ix)ln(2)iπ2wehaveddtln(1t)=11t=n=0tnln(1t)=n=0tn+1n+1=n=1tnnln(1e2ix)=n=1e2inxn=n=11n(cos(2nx)isin(2nx))u(x)=i(xπ2)n=1cos(2nx)n+in=1sin(2nx)nbutu(x)Rln(sinx)=n=1cos(2nx)nandxπ2+n=1sin(2nx)nv(x)=ln(cosx)=ln(sin(π2x))=n=1cos(2n(π2x))n=n=1cos(nπ2nx)n=n=1(1)ncos(2nx)nln(tanx)=u(x)v(x)=n=1cos(2nx)n+n=1(1)nncos(2nx)=n=1(1)n1ncos(2nx)wechangenby2n+1wegetln(tanx)=2n=012n+1cos(2(2n+1)x)ln(tanx)=2n=0cos((4n+2)x)2n+1

Leave a Reply

Your email address will not be published. Required fields are marked *