Menu Close

find-function-f-x-and-g-x-such-that-f-2x-1-g-1-x-x-1-f-x-x-1-2g-1-2x-2-3-




Question Number 187988 by cortano12 last updated on 24/Feb/23
 find function f(x) and g(x)   such that  { ((f(2x−1)+g(1−x)=x+1)),((f((x/(x+1)))+2g((1/(2x+2)))=3)) :}
findfunctionf(x)andg(x)suchthat{f(2x1)+g(1x)=x+1f(xx+1)+2g(12x+2)=3
Answered by MathGuy last updated on 24/Feb/23
Answer :− do x→x+1 in eq.1 & x→x−1 in eq.2  you will get  f(2x+1)+g(−x)=x+2 as new eq.1. call it eq.3  &  f(((x−1)/x))+2g((1/(2x)))=3 as new eq.2. call it eq.4  do x→−x in eq.3 & x→(1/(2x)) in eq.4  you will get  f(1−2x)+g(x)=2−x  ; call it eq.5  &  f(1−2x)+2g(x)=3  ; call it eq.6    doing [eq.6−eq.5] gives    g(x)=x+1    put value of g(x) in eq.5  you will get  f(1−2x)=1−2x  now putting x→((1−x)/2) , gives  f(x)=x    so we have f(x)=x & g(x)=x+1
Answer:doxx+1ineq.1&xx1ineq.2youwillgetf(2x+1)+g(x)=x+2asneweq.1.calliteq.3&f(x1x)+2g(12x)=3asneweq.2.calliteq.4doxxineq.3&x12xineq.4youwillgetf(12x)+g(x)=2x;calliteq.5&f(12x)+2g(x)=3;calliteq.6doing[eq.6eq.5]givesg(x)=x+1putvalueofg(x)ineq.5youwillgetf(12x)=12xnowputtingx1x2,givesf(x)=xsowehavef(x)=x&g(x)=x+1
Answered by Rasheed.Sindhi last updated on 24/Feb/23
 such that  { ((f(2x−1)+g(1−x)=x+1...(i))),((f((x/(x+1)))+2g((1/(2x+2)))=3....(ii))) :}  (i):_(−)   2x−1=y⇒x=((y+1)/2)  (i)⇒f(y)+g(1−((y+1)/2))=((y+1)/2)+1             f(y)+g(((1−y)/2))=((y+3)/2)....(iii)  (ii):_(−)   (x/(x+1))=y  x−yx=y  x=(y/(1−y))  (ii)⇒f(y)+2g((1/(2((y/(1−y)))+2)))=3       f(y)+2g((1/((2y+2−2y)/(1−y))))=3       f(y)+2g(((1−y)/2))=3......(iv)  (iv)−(iii):g(((1−y)/2))=3−((y+3)/2)=((3−y)/2)  Let ((1−y)/2)=x            g(x)=((1−y+2)/2)=((1−y)/2)+1=x+1  2(iii)−(iv):  (vi):      f(y)+2g(((1−y)/2))=3  2(iii):  2f(y)+2g(((1−y)/2))=y+3    2(iii)−(iv):  f(y)=y+3−3                                f(y)=y                                f(x)=x
suchthat{f(2x1)+g(1x)=x+1(i)f(xx+1)+2g(12x+2)=3.(ii)(i):2x1=yx=y+12(i)f(y)+g(1y+12)=y+12+1f(y)+g(1y2)=y+32.(iii)(ii):xx+1=yxyx=yx=y1y(ii)f(y)+2g(12(y1y)+2)=3f(y)+2g(12y+22y1y)=3f(y)+2g(1y2)=3(iv)(iv)(iii):g(1y2)=3y+32=3y2Let1y2=xg(x)=1y+22=1y2+1=x+12(iii)(iv):(vi):f(y)+2g(1y2)=32(iii):2f(y)+2g(1y2)=y+32(iii)(iv):f(y)=y+33f(y)=yf(x)=x
Answered by Rasheed.Sindhi last updated on 25/Feb/23
 find function f(x) and g(x)   such that  { ((f(2x−1)+g(1−x)=x+1...(i))),((f((x/(x+1)))+2g((1/(2x+2)))=3.....(ii))) :}   (i):  1−x=y⇒ x=1−y         (i)⇒f( 2(1−y)−1 )+g(y)=1−y+1        f(1−2y)+g(y)=2−y.....(iii)  (ii): (1/(2x+2))=y⇒2xy+2y=1⇒x=((1−2y)/(2y))        (ii)⇒f((((1−2y)/(2y))/(((1−2y)/(2y))+1)))+2g(y)=3  (((1−2y)/(2y))/(((1−2y)/(2y))+1))=1−2y          f(1−2y)+2g(y)=3......(iv)  (iv)−(iii):   g(y)=3−(2−y)=y+1                          g(x)=x+1  2(iii)−(iv):      2(iii)⇒ 2f(1−2y)+2g(y)=4−2y        (iv)⇒    f(1−2y)+2g(y)=3                        f(1−2y)=4−2y−3                        f(1−2y)=1−2y                        f(x)=x
findfunctionf(x)andg(x)suchthat{f(2x1)+g(1x)=x+1(i)f(xx+1)+2g(12x+2)=3..(ii)(i):1x=yx=1y(i)f(2(1y)1)+g(y)=1y+1f(12y)+g(y)=2y..(iii)(ii):12x+2=y2xy+2y=1x=12y2y(ii)f(12y2y12y2y+1)+2g(y)=312y2y12y2y+1=12yf(12y)+2g(y)=3(iv)(iv)(iii):g(y)=3(2y)=y+1g(x)=x+12(iii)(iv):2(iii)2f(12y)+2g(y)=42y(iv)f(12y)+2g(y)=3f(12y)=42y3f(12y)=12yf(x)=x

Leave a Reply

Your email address will not be published. Required fields are marked *