Question Number 62209 by maxmathsup by imad last updated on 17/Jun/19
$${find}\:{g}\left({a}\right)\:=\int\left({x}+{a}\right)\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{dx}\: \\ $$
Commented by maxmathsup by imad last updated on 18/Jun/19
$${changement}\:{x}={ach}\left({t}\right)\:{give}\:{g}\left({a}\right)\:=\int\:\:\left({acht}\:+{a}\right)\sqrt{{a}^{\mathrm{2}} \left({ch}^{\mathrm{2}} {t}−\mathrm{1}\right)}{ash}\left({t}\right){dt} \\ $$$$={a}^{\mathrm{2}} \mid{a}\mid\:\int\:\:\left(\mathrm{1}+{ch}\left({t}\right){sh}^{\mathrm{2}} \left({t}\right)\:{dt}\right. \\ $$$$={a}^{\mathrm{2}} \mid{a}\mid\:\int\mathrm{2}{ch}^{\mathrm{2}} {t}\:{sh}^{\mathrm{2}} {t}\:{dt}\:=\mathrm{2}{a}^{\mathrm{2}} \mid{a}\mid\:\int\:\:\left(\frac{\mathrm{1}}{\mathrm{2}}{sh}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} {dt} \\ $$$$=\frac{{a}^{\mathrm{2}} \mid{a}\mid}{\mathrm{2}}\:\int\:\:\:\frac{{ch}\left(\mathrm{4}{t}\right)−\mathrm{1}}{\mathrm{2}}{dt}\:=\frac{{a}^{\mathrm{2}} \mid{a}\mid}{\mathrm{4}}\:\int\:\:\left({ch}\left(\mathrm{4}{t}\right)−\mathrm{1}\right){dt} \\ $$$$=\frac{{a}^{\mathrm{2}} \mid{a}\mid}{\mathrm{16}}\:{sh}\left(\mathrm{4}{t}\right)−\frac{{a}^{\mathrm{2}} \mid{a}\mid}{\mathrm{4}}\:{t}\:+{c}\:\:{but}\:{we}\:{have}\: \\ $$$${ch}\left({t}\right)=\frac{{x}}{{a}}\:\Rightarrow{t}\:={argch}\left(\frac{{x}}{{a}}\right)={ln}\left(\frac{{x}}{{a}}\:+\sqrt{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\mathrm{1}}\right)\:\Rightarrow \\ $$$$\mathrm{4}{t}\:={ln}\left\{\:\left(\frac{{x}}{{a}}\:+\sqrt{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\mathrm{1}}\right)^{\mathrm{4}} \right\}\:\:{and}\: \\ $$$${sh}\left(\mathrm{4}{t}\right)\:=\frac{{e}^{\mathrm{4}{t}} \:−{e}^{−\mathrm{4}{t}} }{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\:\left(\frac{{x}}{{a}}+\sqrt{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\mathrm{1}}\right)^{\mathrm{4}} −\left(\frac{{x}}{{a}}+\sqrt{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\mathrm{1}}\right)^{−\mathrm{4}} \right\}\:\Rightarrow \\ $$$${A}\:=\frac{{a}^{\mathrm{2}} \mid{a}\mid}{\mathrm{32}}\left\{\:\left(\frac{{x}}{{a}}\:+\sqrt{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\mathrm{1}}\right)^{\mathrm{4}} −\left(\frac{{x}}{{a}}+\sqrt{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\mathrm{1}\right)^{−\mathrm{4}} \right\}−\frac{{a}^{\mathrm{2}} \mid{a}\mid}{\mathrm{4}}{ln}\left(\frac{{x}}{{a}}+\sqrt{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\mathrm{1}}\right)\:+{C}\: \\ $$
Answered by tanmay last updated on 17/Jun/19
$$\int{x}\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:{dx}+{a}\int\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} {d}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)+{a}\int\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}+{a}\left[\frac{{x}\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:\right)\right]+{c} \\ $$