Menu Close

Find-gcd-of-x-4-x-3-4x-2-x-5-and-x-3-x-2-9x-9-




Question Number 119600 by bemath last updated on 25/Oct/20
Find gcd of x^4 +x^3 −4x^2 +x+5   and x^3 +x^2 −9x−9
Findgcdofx4+x34x2+x+5andx3+x29x9
Answered by TANMAY PANACEA last updated on 25/Oct/20
x^3 +x^2 −9x−9  =x^2 (x+1)−9(x+1)  =(x+1)(x+3)(x−3)  x^4 +x^3 −4x^2 +x+5  =x^4 +x^3 −4x^2 −4x+5x+5  =x^3 (x+1)  −4x(x+1) +5 (x+1)    =(x+1)(x^3 −4x+5)  g.c.d=(x+1)
x3+x29x9=x2(x+1)9(x+1)=(x+1)(x+3)(x3)x4+x34x2+x+5=x4+x34x24x+5x+5=x3(x+1)4x(x+1)+5(x+1)=(x+1)(x34x+5)g.c.d=(x+1)
Commented by TANMAY PANACEA last updated on 25/Oct/20
to Tinku tara why i can not share question
toTinkutarawhyicannotsharequestion
Commented by TANMAY PANACEA last updated on 25/Oct/20
Commented by TANMAY PANACEA last updated on 25/Oct/20
no share button
nosharebutton
Commented by bemath last updated on 25/Oct/20
click three dots sir
clickthreedotssir
Commented by TANMAY PANACEA last updated on 25/Oct/20
ok sir
oksir
Commented by TANMAY PANACEA last updated on 25/Oct/20
∫_0 ^(2π) (dx/(2cos^2 x+(√3) sin^2 x))  i can not post by +  so in comment
02πdx2cos2x+3sin2xicannotpostby+soincomment
Commented by mindispower last updated on 25/Oct/20
=2∫_0 ^π (dx/(2cos^2 (x)+(√3)sin^2 (x)))  =2∫_0 ^(π/2) (dx/(2cos^2 (x)+(√3)sin^2 (x)))+2∫_0 ^(π/2) (dx/(2sin^2 (x)+(√3)cos^2 (x)))  ∫_0 ^(π/2) (dx/(asin^2 (x)+bcos^2 (x))),a,b>0  =∫_0 ^(π/2) (1/(bcos^2 (x)))(dx/((1+((√(a/b))tg(x))^2 ))  =(1/( (√(ab))))∫_0 ^(π/2) ((d(((√a)/( (√b)))tg(x)))/(1+(((√a)/( (√b)))tg(x))^2 ))  =(1/( (√(ab))))[tan^(−1) ((√(a/b))tg(x))]_0 ^(π/2) =(π/(2(√(ab))))  we find  2.(π/(2(√(2(√3)))))+((2.π)/(2(√((√3).2))))=((2π)/( (√(2(√3)))))
=20πdx2cos2(x)+3sin2(x)=20π2dx2cos2(x)+3sin2(x)+20π2dx2sin2(x)+3cos2(x)0π2dxasin2(x)+bcos2(x),a,b>0=0π21bcos2(x)dx(1+(abtg(x))2=1ab0π2d(abtg(x))1+(abtg(x))2=1ab[tan1(abtg(x))]0π2=π2abwefind2.π223+2.π23.2=2π23
Commented by TANMAY PANACEA last updated on 25/Oct/20
thank you sir
thankyousir
Commented by mindispower last updated on 25/Oct/20
withe pleasur sir i hop you doing well i dont know why but  im thinking that is lectur withe  residus Theorem ?
withepleasursirihopyoudoingwellidontknowwhybutimthinkingthatislecturwitheresidusTheorem?
Commented by TANMAY PANACEA last updated on 25/Oct/20
i have shared this question ...other question   seem similar in type
ihavesharedthisquestionotherquestionseemsimilarintype
Commented by Tinku Tara last updated on 26/Oct/20
If you want to always start in forum  by default. Change setting and  enable start i Q&A forum and save  forum preferences
Ifyouwanttoalwaysstartinforumbydefault.ChangesettingandenablestartiQ&Aforumandsaveforumpreferences
Commented by Bird last updated on 25/Oct/20
A=∫_0 ^(2π)  (dx/(2cos^2 x+(√3)sin^2 x)) ⇒  A=∫_0 ^(2π)   (dx/(2((1+cos(2x))/2)+(√3)((1−cos(2x))/2)))  =∫_0 ^(2π)   ((2dx)/(2+2cos(2x)+(√3)−(√3)cos(2x)))  =∫_0 ^(2π)   ((2dx)/((2−(√3))cos(2x)+2+(√3)))  =_(2x=t)    ∫_0 ^(4π)   (dt/((2−(√3))cost +2+(√3)))  =∫_0 ^(2π)  (dt/((2−(√3))cost+2+(√3)))  +∫_(2π) ^(4π)  (dt/((2−(√3))cost +2+(√3)))(→t=2π +u)  =2∫_0 ^(2π)  (dt/((2−(√3))cost+2+(√3)))  =_(e^(it) =z)    2∫_(∣z∣=1)     (dz/(iz{(2−(√3))((z+z^(−1) )/2)+2+(√3)}))  =2∫_(∣z∣=1)     ((2dz)/(iz{(2−(√3))(z+z^(−1) )+4+2(√3))))  =4∫_(∣z∣=1)    ((−idz)/((2−(√3))(z^2 +1)+(4+2(√3))z))  =4∫_(∣z∣=1)    ((−idz)/((2−(√3))z^2 +(4+2(√3))z +2−(√3)))  ϕ(z) =((−i)/((2−(√3))z^2 +(4+2(√3))z +2−(√3)))  Δ^′  =(2+(√3))^2 −(2−(√3))^2   =4+4(√3)+3−4+4(√3)−3 =8(√3)  z_1 =((−2−(√3)+2(√(2(√3))))/((2−(√3))))  z_2 =((−2−(√3)+2(√(2(√3))))/((2−(√3))))  ∣z_1 ∣<1 and ∣z_2 ∣>1    ϕ(z)=((−i)/((2−(√3))(z−z_1 )(z−z_2 )))  ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,z_1 )  =2iπ×((−i)/((2−(√3))4(√(2(√3)))))×(2−(√3))  =((2π)/(4(√(2(√3))))) =(π/(2(√(2(√3))))) ⇒  A=((4π)/(2(√(2(√3))))) ⇒A =((2π)/( (√(2(√3)))))
A=02πdx2cos2x+3sin2xA=02πdx21+cos(2x)2+31cos(2x)2=02π2dx2+2cos(2x)+33cos(2x)=02π2dx(23)cos(2x)+2+3=2x=t04πdt(23)cost+2+3=02πdt(23)cost+2+3+2π4πdt(23)cost+2+3(t=2π+u)=202πdt(23)cost+2+3=eit=z2z∣=1dziz{(23)z+z12+2+3}=2z∣=12dziz{(23)(z+z1)+4+23)=4z∣=1idz(23)(z2+1)+(4+23)z=4z∣=1idz(23)z2+(4+23)z+23φ(z)=i(23)z2+(4+23)z+23Δ=(2+3)2(23)2=4+43+34+433=83z1=23+223(23)z2=23+223(23)z1∣<1andz2∣>1φ(z)=i(23)(zz1)(zz2)z∣=1φ(z)dz=2iπRes(φ,z1)=2iπ×i(23)423×(23)=2π423=π223A=4π223A=2π23
Commented by MJS_new last updated on 26/Oct/20
seems you are in editor mode  go into menue (“≡”−symbol on left top)  directly after starting the app and then  choose forum
seemsyouareineditormodegointomenue(symbolonlefttop)directlyafterstartingtheappandthenchooseforum
Commented by TANMAY PANACEA last updated on 26/Oct/20
ok sir
oksir
Commented by Tinku Tara last updated on 26/Oct/20
Answered by benjo_mathlover last updated on 25/Oct/20
using polynomial division we find that   x^4 +x^3 −4x^2 +x+5=x(x^3 +x^2 −9x−9)+(5x^2 +10x+5)  next we have to divide x^3 +x^2 −9x−9 by 5x^2 +10x+5  we find that x^3 +x^2 −9x−9=(5x^2 +10x+5)(((x−1)/5))+(−8x−8)  Finally we divide 5x^2 +10x+5 by −8x−8 and we find that  5x^2 +10x+5=(−8x−8)[ −(5/( 8))(x+1) ]  Thus gcd (x^4 +x^3 −4x^2 +x+5 , x^3 +x^2 −9x−9) = x+1
usingpolynomialdivisionwefindthatx4+x34x2+x+5=x(x3+x29x9)+(5x2+10x+5)nextwehavetodividex3+x29x9by5x2+10x+5wefindthatx3+x29x9=(5x2+10x+5)(x15)+(8x8)Finallywedivide5x2+10x+5by8x8andwefindthat5x2+10x+5=(8x8)[58(x+1)]Thusgcd(x4+x34x2+x+5,x3+x29x9)=x+1

Leave a Reply

Your email address will not be published. Required fields are marked *