Menu Close

Find-general-solution-1-sin-x-1-y-dy-dx-cos-x-2-X-tan-1-2-11-cot-1-24-7-tan-1-1-3-find-X-




Question Number 112844 by bemath last updated on 10/Sep/20
 Find general solution  (1)(((sin x)/(1+y))) (dy/dx) = cos x  (2) X = tan^(−1) ((2/(11)))+cot^(−1) (((24)/7))+tan^(−1) ((1/3))    find X .
$$\:\mathrm{Find}\:\mathrm{general}\:\mathrm{solution} \\ $$$$\left(\mathrm{1}\right)\left(\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{y}}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{cos}\:\mathrm{x} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{X}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{11}}\right)+\mathrm{cot}^{−\mathrm{1}} \left(\frac{\mathrm{24}}{\mathrm{7}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\:\:\mathrm{find}\:\mathrm{X}\:. \\ $$
Commented by bemath last updated on 12/Sep/20
Answered by john santu last updated on 10/Sep/20
(2) first step.   tan^(−1) ((2/(11)))+cot^(−1) (((24)/7)) = tan^(−1) ((2/(11)))+tan^(−1) ((7/(24)))           = tan^(−1) ((((2/(11))+(7/(24)))/(1−(2/(11)).(7/(24))))) = tan^(−1) ((1/2))  second step   X = tan^(−1) ((1/2))+tan^(−1) ((1/3))  X= tan^(−1) ((((1/2)+(1/3))/(1−(1/2).(1/3)))) = tan^(−1) (1)  X = (π/4).    ((JS)/(a math farmer))
$$\left(\mathrm{2}\right)\:{first}\:{step}. \\ $$$$\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{11}}\right)+\mathrm{cot}^{−\mathrm{1}} \left(\frac{\mathrm{24}}{\mathrm{7}}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{11}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{7}}{\mathrm{24}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\frac{\mathrm{2}}{\mathrm{11}}+\frac{\mathrm{7}}{\mathrm{24}}}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{11}}.\frac{\mathrm{7}}{\mathrm{24}}}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${second}\:{step}\: \\ $$$${X}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${X}=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{3}}}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}\right) \\ $$$${X}\:=\:\frac{\pi}{\mathrm{4}}. \\ $$$$\:\:\frac{{JS}}{{a}\:{math}\:{farmer}} \\ $$
Answered by bemath last updated on 10/Sep/20

Leave a Reply

Your email address will not be published. Required fields are marked *