find-General-solution-cot-x-cot-2x-cot3x-0- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 105619 by bobhans last updated on 30/Jul/20 findGeneralsolutioncotx+cot2x+cot3x=0 Answered by bemath last updated on 30/Jul/20 ⇔cot(x)+cot2(x)−12cot(x)+3cot(x)−cot3(x)1−3cot2(x)=0setcot(x)=pp+p2−12p+3p−p31−3p2=011(p2)2−12p2+1=0p2=12±122−4×1122=12±1022→{p2=1;p=±1p2=111;p=±111→{tan(x)=±1tan(x)=±11→{x=±π4+k.πx=±arctan(11)+k.π Answered by 1549442205PVT last updated on 30/Jul/20 cotx+cot2x+cot3x=0(1)weneedtheconditions:{sinx≠0sin2x≠0sin3x≠0⇔x≠kπ,x≠mπ2,x≠nπ3⇔{x≠nπ3x≠π2+kπ(1)⇔cosxsinx+cos2xsim2x+cos3xsin3x=0⇔sin3xcosx+cos3xsinxsinxsin3x+cos2xsin2x=0⇔sin4xsinxsin3x+cos2xsin2x=0⇔sin4xsin2x+cos2xsinxsin3x=02sin22xcos2x+cos2xsinxsin3x=0⇔cos2x(2sin22x+sinxsin3x)=0i)cos2x=0⇔2x=kπ2⇔x=kπ4ii)2sin22x+sinxsin3x=0⇔8sin2xcos2x+sinx(3sinx−4sin3x)=0⇔sin2x(8cos2x+3−4sin2x)=0⇔8cos2x+3−4(1−cos2x)=0(assinx≠0)⇔12cos2x−1=0⇔cos2x=112⇔cosx=±36⇔x=±cos−1(36)+2mπorx=±cos−1(−36)Thus,thesolutionsofthegivenequationare:x∈{kπ4;±cos−1(36)+2mπ;±cos−1(−36)+2nπ}wherek≠4p,k≠4q+2(p,q∈Z) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-tan-cos-2x-1-2x-2-Next Next post: The-average-ages-of-three-person-is-27-years-Their-ages-are-in-the-propor-tion-of-1-3-5-What-is-the-age-in-years-of-the-youngest-one-among-them-Mastermind- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.