Menu Close

find-General-solution-cot-x-cot-2x-cot3x-0-




Question Number 105619 by bobhans last updated on 30/Jul/20
find General solution cot x+cot 2x+cot3x= 0
findGeneralsolutioncotx+cot2x+cot3x=0
Answered by bemath last updated on 30/Jul/20
⇔cot (x)+((cot^2 (x)−1)/(2cot (x)))+((3cot (x)−cot^3 (x))/(1−3cot^2 (x)))= 0  set cot (x)= p  p + ((p^2 −1)/(2p))+((3p−p^3 )/(1−3p^2 )) = 0  11(p^2 )^2 −12p^2 +1 = 0  p^2  = ((12±(√(12^2 −4×11)))/(22)) = ((12±10)/(22))  → { ((p^2 =1 ; p = ±1)),((p^2 = (1/(11)); p = ±(1/( (√(11)))))) :}  → { ((tan (x)= ±1)),((tan (x)= ±(√(11)))) :}  → { ((x=±(π/4)+k.π)),((x= ±arc tan ((√(11)))+k.π)) :}
cot(x)+cot2(x)12cot(x)+3cot(x)cot3(x)13cot2(x)=0setcot(x)=pp+p212p+3pp313p2=011(p2)212p2+1=0p2=12±1224×1122=12±1022{p2=1;p=±1p2=111;p=±111{tan(x)=±1tan(x)=±11{x=±π4+k.πx=±arctan(11)+k.π
Answered by 1549442205PVT last updated on 30/Jul/20
cot x+cot 2x+cot3x= 0 (1)  we need the conditions: { ((sinx≠0)),((sin2x≠0)),((sin3x≠0)) :}  ⇔x≠kπ,x≠((mπ)/2),x≠((nπ)/3)⇔ { ((x≠((nπ)/3))),((x≠(π/2)+kπ)) :}  (1)⇔((cosx)/(sinx))+((cos2x)/(sim2x))+((cos3x)/(sin3x))=0  ⇔((sin3xcosx+cos3xsinx)/(sinxsin3x))+((cos2x)/(sin2x))=0  ⇔((sin4x)/(sinxsin3x))+((cos2x)/(sin2x))=0⇔sin4xsin2x+cos2xsinxsin3x=0  2sin^2 2xcos2x+cos2xsinxsin3x=0  ⇔cos2x(2sin^2 2x+sinxsin3x)=0  i)cos2x=0⇔2x=k(π/2)⇔x=((kπ)/4)  ii)2sin^2 2x+sinxsin3x=0⇔8sin^2 xcos^2 x+sinx(3sinx−4sin^3 x)=0  ⇔sin^2 x(8cos^2 x+3−4sin^2 x)=0  ⇔8cos^2 x+3−4(1−cos^2 x)=0 (as sinx≠0)  ⇔12cos^2 x−1=0⇔cos^2 x=(1/(12))⇔cosx=±((√3)/6)  ⇔x=±cos^(−1) (((√3)/6))+2mπ or  x=±cos^(−1) (−((√3)/6))  Thus,the solutions of the given equation are:  x∈{((k𝛑)/4);±cos^(−1) (((√3)/6))+2m𝛑;±cos^(−1) (((−(√3))/6))+2n𝛑}  where k≠4p,k≠4q+2(p,q∈Z)
cotx+cot2x+cot3x=0(1)weneedtheconditions:{sinx0sin2x0sin3x0xkπ,xmπ2,xnπ3{xnπ3xπ2+kπ(1)cosxsinx+cos2xsim2x+cos3xsin3x=0sin3xcosx+cos3xsinxsinxsin3x+cos2xsin2x=0sin4xsinxsin3x+cos2xsin2x=0sin4xsin2x+cos2xsinxsin3x=02sin22xcos2x+cos2xsinxsin3x=0cos2x(2sin22x+sinxsin3x)=0i)cos2x=02x=kπ2x=kπ4ii)2sin22x+sinxsin3x=08sin2xcos2x+sinx(3sinx4sin3x)=0sin2x(8cos2x+34sin2x)=08cos2x+34(1cos2x)=0(assinx0)12cos2x1=0cos2x=112cosx=±36x=±cos1(36)+2mπorx=±cos1(36)Thus,thesolutionsofthegivenequationare:x{kπ4;±cos1(36)+2mπ;±cos1(36)+2nπ}wherek4p,k4q+2(p,qZ)

Leave a Reply

Your email address will not be published. Required fields are marked *