Menu Close

find-grad-r-m-where-r-x-2-y-2-z-2-




Question Number 84624 by subhankar10 last updated on 14/Mar/20
find grad r^m   where r=x^2 +y^2 +z^2
$$\mathrm{find}\:\mathrm{grad}\:\mathrm{r}^{\mathrm{m}} \:\:\mathrm{where}\:\mathrm{r}=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \\ $$
Answered by TANMAY PANACEA last updated on 14/Mar/20
▽^→ =i(∂/∂x)+j(∂/∂y)+k(∂/∂z)  is grade  to find ▽^→ (x^2 +y^2 +z^2 )^m   (i(∂/∂x)+j(∂/∂y)+k(∂/∂z))(x^2 +y^2 +z^2 )^m   =m(x^2 +y^2 +z^2 )^(m−1) (i2x+j2y+k2z)  =mr^(m−1) ×2(r^→ )=2mr^(m−1) .r^→   or   m(x^2 +y^2 +z^2 )^(m−1) ×2(ix+jy+kz)
$$\overset{\rightarrow} {\bigtriangledown}={i}\frac{\partial}{\partial{x}}+{j}\frac{\partial}{\partial{y}}+{k}\frac{\partial}{\partial{z}}\:\:{is}\:{grade} \\ $$$${to}\:{find}\:\overset{\rightarrow} {\bigtriangledown}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{{m}} \\ $$$$\left({i}\frac{\partial}{\partial{x}}+{j}\frac{\partial}{\partial{y}}+{k}\frac{\partial}{\partial{z}}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{{m}} \\ $$$$={m}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{{m}−\mathrm{1}} \left({i}\mathrm{2}{x}+{j}\mathrm{2}{y}+{k}\mathrm{2}{z}\right) \\ $$$$={mr}^{{m}−\mathrm{1}} ×\mathrm{2}\left(\overset{\rightarrow} {{r}}\right)=\mathrm{2}{mr}^{{m}−\mathrm{1}} .\overset{\rightarrow} {{r}} \\ $$$${or}\:\:\:{m}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{{m}−\mathrm{1}} ×\mathrm{2}\left({ix}+{jy}+{kz}\right) \\ $$
Commented by subhankar10 last updated on 15/Mar/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by TANMAY PANACEA last updated on 15/Mar/20
most welcome
$${most}\:{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *