Menu Close

find-gt-0-such-that-f-x-1-lt-0-01-when-0-lt-x-2-lt-where-f-x-x-2-5x-6-x-2-hence-use-definition-to-show-that-lim-xtends-2-f-x-1-




Question Number 25814 by rita1608 last updated on 15/Dec/17
find δ>0 such that ∣f(x)+1∣<0.01  when 0<∣x−2∣<δ,where  f(x)=((x^2 −5x+6)/(x−2)),hence use ε_δ    definition to show that   ((lim)/(xtends 2))f(x)=−1
$${find}\:\delta>\mathrm{0}\:{such}\:{that}\:\mid{f}\left({x}\right)+\mathrm{1}\mid<\mathrm{0}.\mathrm{01} \\ $$$${when}\:\mathrm{0}<\mid{x}−\mathrm{2}\mid<\delta,{where} \\ $$$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}}{{x}−\mathrm{2}},{hence}\:{use}\:\varepsilon\_\delta\:\: \\ $$$${definition}\:{to}\:{show}\:{that}\: \\ $$$$\frac{{lim}}{{xtends}\:\mathrm{2}}{f}\left({x}\right)=−\mathrm{1} \\ $$
Answered by ajfour last updated on 15/Dec/17
∣f(x)+1∣=∣(((x−2)(x−3))/((x−2)))+1∣< 0.01  ⇒ for x≠2, ∣x−3+1∣<0.01  or   ∣x−2∣< 0.01  so here δ =ε =0.01  ⇒  lim_(x→2)  f(x)=−1 .
$$\mid{f}\left({x}\right)+\mathrm{1}\mid=\mid\frac{\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)}{\left({x}−\mathrm{2}\right)}+\mathrm{1}\mid<\:\mathrm{0}.\mathrm{01} \\ $$$$\Rightarrow\:{for}\:{x}\neq\mathrm{2},\:\mid{x}−\mathrm{3}+\mathrm{1}\mid<\mathrm{0}.\mathrm{01} \\ $$$${or}\:\:\:\mid{x}−\mathrm{2}\mid<\:\mathrm{0}.\mathrm{01} \\ $$$${so}\:{here}\:\delta\:=\epsilon\:=\mathrm{0}.\mathrm{01} \\ $$$$\Rightarrow\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:{f}\left({x}\right)=−\mathrm{1}\:. \\ $$
Commented by kaivan.ahmadi last updated on 15/Dec/17
δ≤ε and Max(δ)=0.01
$$\delta\leqslant\epsilon\:\mathrm{and}\:\mathrm{Max}\left(\delta\right)=\mathrm{0}.\mathrm{01} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *