Menu Close

Find-how-many-distinct-integers-are-there-in-this-sequence-1-2-1-100-2-2-2-100-3-2-3-100-100-2-100-100-where-x-is-the-greatest-integer-that-is-less-than-




Question Number 176155 by adhigenz last updated on 14/Sep/22
Find how many distinct integers are there in this sequence:  ⌊((1^2 +1)/(100))⌋, ⌊((2^2 +2)/(100))⌋, ⌊((3^2 +3)/(100))⌋, ..., ⌊((100^2 +100)/(100))⌋  where ⌊x⌋ is the greatest integer that is less than or equal to x
Findhowmanydistinctintegersarethereinthissequence:12+1100,22+2100,32+3100,,1002+100100wherexisthegreatestintegerthatislessthanorequaltox
Commented by Rasheed.Sindhi last updated on 14/Sep/22
102?
102?
Commented by mr W last updated on 14/Sep/22
there are totally 100 integers. so the  number of distinct integers must be  less than 100.
therearetotally100integers.sothenumberofdistinctintegersmustbelessthan100.
Commented by Rasheed.Sindhi last updated on 14/Sep/22
You′re very right sir!I′ve committed  mistake.
Youreveryrightsir!Ivecommittedmistake.
Answered by Rasheed.Sindhi last updated on 14/Sep/22
⌊((1^2 +1)/(100))⌋, ⌊((2^2 +2)/(100))⌋, ⌊((3^2 +3)/(100))⌋, ..., ⌊((100^2 +100)/(100))⌋    ⌊((n^2 +n)/(100))⌋=⌊((  ((n(n+1))/2)  )/((100)/2))⌋=⌊((  ((n(n+1))/2)  )/(50))⌋      0≤((n(n+1))/2)<50 ;n=1,2,...,9:        ⌊((  ((n(n+1))/2)  )/(50))⌋=0  50≤((n(n+1))/2)<100;n=10,11,...,13:        ⌊((  ((n(n+1))/2)  )/(50))⌋=1  ....  ...  50k≤((n(n+1))/2)<50(k+1):        ⌊((  ((n(n+1))/2)  )/(50))⌋=k  We′ve to solve many such   inequalities...  Continue...
12+1100,22+2100,32+3100,,1002+100100n2+n100=n(n+1)21002=n(n+1)2500n(n+1)2<50;n=1,2,,9:n(n+1)250=050n(n+1)2<100;n=10,11,,13:n(n+1)250=1.50kn(n+1)2<50(k+1):n(n+1)250=kWevetosolvemanysuchinequalitiesContinue
Answered by Rasheed.Sindhi last updated on 16/Sep/22
≪“SOMETHING is better than NOTHING”_(■ A       N       S       W       E       R ■) ≫  ⌊((1^2 +1)/(100))⌋, ⌊((2^2 +2)/(100))⌋, ⌊((3^2 +3)/(100))⌋, ..., ⌊((100^2 +100)/(100))⌋    ⌊((n^2 +n)/(100))⌋=⌊((  ((n(n+1))/2)  )/((100)/2))⌋=⌊((  ((n(n+1))/2)  )/(50))⌋      50k≤((n(n+1))/2)<50(k+1) ,k∈{0,1,2,...}:        ⌊((  ((n(n+1))/2)  )/(50))⌋=k  For (N/(D∈N)) to be integer, N should be  integral multiple of D   determinant ((n,(n(n+1)/2_(cumulative total^(OR) ) )),(1,1),(2,3),(3,6),(4,(10)),(5,(15)),(6,(21)),(7,(28)),(8,(36)),(9,(45<50   (1))),((10),(55)),((11),(66)),((12),(78)),((13),(91<100   (2))),((14),(105)),((15),(120)),((16),(136<150 (3))),((17),(153)),((18),(171)),((19),(190<200 (4))),((20),(210)),((21),(231<250 (5))),((22),(253)),((23),(276<300 (6))),((24),(300)),((25),(325<350 (7))),((26),(351)),((27),(378<400 (8))),((28),(406)),((29),(435<450 (9))),((30),(465)),((31),(496<500 (10))),((32),(528<550 (11))),((33),(561)),((34),(595<600 (12))),((35),(630<650 (13))),((36),(666<700 (14))),((37),(703)),((38),(741<750 (15))),((39),(780<800 (16)),((40),(820<850 (17))),((41),(861<900 (18))),((42),(903)),((43),(946<950 (19))),((44),(990<1000 (20))),((45),(1035<1050 (21))),((46),(1081<1100 (22))),((47),(1128<1150 (23))),((48),(1176<1200 (24))),((49),(1225<1250 (25))),((50),(1275<1300 (26))))  determinant ((n,(n(n+1)/2_(cumulative total^(OR) ) )),((51),(1326<1350 (27))),((52),(1378<1400 (28))),((53),(1431<1450 (29))),((54),(1485<1500 (30)),((55),(1540<1550 (31))),((56),(1596<1600 (32))),((57),(1653<1700 (33))),((58),(1711<1750 (34))),((59),(1770<1800 (35))),((60),(1830<1850 (36))),((61),(1891<1900 (37))),((62),(1953<2000 (38))),((63),(2016<2050 (39))),((64),(2080<2100 (40))),((65),(2145<2150 (41))),((66),(2211<2250 (42))),((67),(2278<2300 (43))),((68),(2346<2350 (44))),((69),(2415<2450 (45))),((70),(2485<2500 (46))),((71),(2556<2600 (47))),((72),(2628<2650 (48))),((73),(2701<2750 (49))),((74),(2775<2800 (50))),((75),(2850<2900 (51))),((76),(2926<2950 (52))),((77),(3003<3050 (53))),((78),(3081<3100 (54))),((79),(3160<3200 (55))),((80),(3240<3250 (56))),((81),(3321<3350 (57))),((82),(3403<3450 (58))),((83),(3486<3500 (59))),((84),(3570<3600 (60))),((85),(3655<3700 (61))),((86),(3741<3750 (62))),((87),(3828<3850 (63))),((88),(3916<3950 (64))),((89),(4005<4050 (65))),((90),(4095<4100 (66))),((91),(4186<4200 (67))),((92),(4278<4300 (68))),((93),(4371<4400 (69))),((94),(4465<4500 (70))),((95),(4560<4600 (71))),((96),(4656<4700 (72))),((97),(4753<4800 (73))),((98),(4851<4900 (74))),((99),(4950<5000 (75))),((100),(5050<5100 (76)_( determinant (((     76     )))) )))  Changing colour  of font here   means ′other distinct integer′.
SOMETHINGisbetterthanNOTHING◼ANSWER◼12+1100,22+2100,32+3100,,1002+100100n2+n100=n(n+1)21002=n(n+1)25050kn(n+1)2<50(k+1),k{0,1,2,}:n(n+1)250=kForNDNtobeinteger,NshouldbeintegralmultipleofDnn(n+1)/2cumulativetotalOR112336410515621728836945<50(1)1055116612781391<100(2)141051512016136<150(3)171531817119190<200(4)2021021231<250(5)2225323276<300(6)2430025325<350(7)2635127378<400(8)2840629435<450(9)3046531496<500(10)32528<550(11)3356134595<600(12)35630<650(13)36666<700(14)3770338741<750(15)39780<800(1640820<850(17)41861<900(18)4290343946<950(19)44990<1000(20)451035<1050(21)461081<1100(22)471128<1150(23)481176<1200(24)491225<1250(25)501275<1300(26)nn(n+1)/2cumulativetotalOR511326<1350(27)521378<1400(28)531431<1450(29)541485<1500(30551540<1550(31)561596<1600(32)571653<1700(33)581711<1750(34)591770<1800(35)601830<1850(36)611891<1900(37)621953<2000(38)632016<2050(39)642080<2100(40)652145<2150(41)662211<2250(42)672278<2300(43)682346<2350(44)692415<2450(45)702485<2500(46)712556<2600(47)722628<2650(48)732701<2750(49)742775<2800(50)752850<2900(51)762926<2950(52)773003<3050(53)783081<3100(54)793160<3200(55)803240<3250(56)813321<3350(57)823403<3450(58)833486<3500(59)843570<3600(60)853655<3700(61)863741<3750(62)873828<3850(63)883916<3950(64)894005<4050(65)904095<4100(66)914186<4200(67)924278<4300(68)934371<4400(69)944465<4500(70)954560<4600(71)964656<4700(72)974753<4800(73)984851<4900(74)994950<5000(75)1005050<5100(76)76Changingcolouroffontheremeansotherdistinctinteger.
Commented by mr W last updated on 15/Sep/22
sum(if(ceil(a(k))<a(k+1)),k=0..101)
sum(if(ceil(a(k))<a(k+1)),k=0..101)
Commented by Rasheed.Sindhi last updated on 15/Sep/22
Ans: 76  adhigenz sir, please confirm the  answer before I give final shape to  my solution.
Ans:76adhigenzsir,pleaseconfirmtheanswerbeforeIgivefinalshapetomysolution.
Commented by mr W last updated on 15/Sep/22
answer 76 is correct sir.
answer76iscorrectsir.
Commented by Rasheed.Sindhi last updated on 15/Sep/22
T h a n k s   sir!
Thankssir!
Commented by mr W last updated on 15/Sep/22
⌊((n^2 +n)/(100))⌋=k  1≤n≤100  ⇒0≤k≤101  but not each number from 0 to 101 is  for k possible.    k≤((n(n+1))/(100))<k+1  100k≤n(n+1)<100(k+1)  n^2 +n−100k≥0  n≥((−1+(√(1+400k)))/2)  n^2 +n−100(k+1)<0  n<((−1+(√(1+400(k+1))))/2)  ((−1+(√(1+400k)))/2)≤n<((−1+(√(1+400(k+1))))/2)  we can see a “k” is possible, i.e. a “n”  exists, only if  ⌈((−1+(√(1+400k)))/2)⌉<((−1+(√(1+400(k+1))))/2)  for k from 0 to 101, only 76 numbers  fulfill this condition. i checked this  using Graph.
n2+n100=k1n1000k101butnoteachnumberfrom0to101isforkpossible.kn(n+1)100<k+1100kn(n+1)<100(k+1)n2+n100k0n1+1+400k2n2+n100(k+1)<0n<1+1+400(k+1)21+1+400k2n<1+1+400(k+1)2wecanseeakispossible,i.e.anexists,onlyif1+1+400k2<1+1+400(k+1)2forkfrom0to101,only76numbersfulfillthiscondition.icheckedthisusingGraph.
Commented by mr W last updated on 15/Sep/22
Commented by mr W last updated on 15/Sep/22
you did a nice work sir using the table!
youdidaniceworksirusingthetable!
Commented by Rasheed.Sindhi last updated on 15/Sep/22
T_ ^(H^A N) X                     S_I R
THANXSIR
Commented by Tawa11 last updated on 18/Sep/22
Great sirs
Greatsirs

Leave a Reply

Your email address will not be published. Required fields are marked *