Menu Close

find-I-0-1-1-t-1-t-dt-




Question Number 30512 by abdo imad last updated on 22/Feb/18
find  I =∫_0 ^1   (√((1−t)/(1+t))) dt .
$${find}\:\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}\:{dt}\:. \\ $$
Commented by abdo imad last updated on 24/Feb/18
the ch.t=cosθ give I= ∫_0 ^(π/2)  (√((1−cosθ)/(1+cosθ))) sinθdθ  = ∫_0 ^(π/2)  tan((θ/2)) sinθ d.θ =∫_0 ^(π/2)  ((sin((θ/2)))/(cos((θ/2))))2 sin((θ/2))cos((θ/2))dθ  =∫_0 ^(π/2)  2 sin^2 ((θ/2))dθ= ∫_0 ^(π/2)  (1−cosθ)dθ =(π/2) −[sinθ]_0 ^(π/2)   =(π/2) −1.
$${the}\:{ch}.{t}={cos}\theta\:{give}\:{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\sqrt{\frac{\mathrm{1}−{cos}\theta}{\mathrm{1}+{cos}\theta}}\:{sin}\theta{d}\theta \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{tan}\left(\frac{\theta}{\mathrm{2}}\right)\:{sin}\theta\:{d}.\theta\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}\left(\frac{\theta}{\mathrm{2}}\right)}{{cos}\left(\frac{\theta}{\mathrm{2}}\right)}\mathrm{2}\:{sin}\left(\frac{\theta}{\mathrm{2}}\right){cos}\left(\frac{\theta}{\mathrm{2}}\right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{2}\:{sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right){d}\theta=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\mathrm{1}−{cos}\theta\right){d}\theta\:=\frac{\pi}{\mathrm{2}}\:−\left[{sin}\theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\mathrm{1}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *