Question Number 30494 by abdo imad last updated on 22/Feb/18
$${find}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:\:. \\ $$
Answered by sma3l2996 last updated on 24/Feb/18
$${x}={sinh}\left({t}\right)\Rightarrow{dx}={cosh}\left({t}\right){dt}=\sqrt{\mathrm{1}+{sinh}^{\mathrm{2}} {t}}{dt} \\ $$$${dt}=\frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${I}=\int_{\mathrm{0}} ^{{ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)} \frac{{dt}}{\mathrm{1}+{sinh}\left({t}\right)}=\int\frac{{e}^{{t}} {dt}}{{e}^{\mathrm{2}{t}} +{e}^{{t}} −\mathrm{1}} \\ $$$${u}={e}^{{t}} \Rightarrow{du}={e}^{{t}} {dt} \\ $$$${I}=\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}+\mathrm{1}} \frac{{du}}{{u}^{\mathrm{2}} +{u}−\mathrm{1}}=\int\frac{{du}}{\left({u}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{5}}{\mathrm{4}}} \\ $$$${I}=\frac{\mathrm{4}}{\mathrm{5}}\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}+\mathrm{1}} \frac{{du}}{\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}×\frac{\mathrm{2}{u}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{4}}{\mathrm{5}}\int\frac{{du}}{\left(\frac{\mathrm{2}{u}+\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} −\mathrm{1}} \\ $$$${y}=\frac{\mathrm{2}{u}+\mathrm{1}}{\:\sqrt{\mathrm{5}}}\Rightarrow{du}=\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}{dy} \\ $$$${I}=\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{5}}\int_{\mathrm{3}/\sqrt{\mathrm{5}}} ^{\left(\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{3}\right)/\sqrt{\mathrm{5}}} \frac{{dy}}{{y}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{5}}\int\frac{{dy}}{\left({y}+\mathrm{1}\right)\left({y}−\mathrm{1}\right)} \\ $$$${I}=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\int_{\mathrm{3}/\sqrt{\mathrm{5}}} ^{\left(\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{3}\right)/\sqrt{\mathrm{5}}} \left(\frac{\mathrm{1}}{{y}−\mathrm{1}}−\frac{\mathrm{1}}{{y}+\mathrm{1}}\right){dy}=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\left[{ln}\mid\frac{{y}−\mathrm{1}}{{y}+\mathrm{1}}\mid\right]_{\mathrm{3}/\sqrt{\mathrm{5}}} ^{\left(\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{3}\right)/\sqrt{\mathrm{5}}} \\ $$