Menu Close

find-I-0-1-dx-1-x-1-x-2-




Question Number 30494 by abdo imad last updated on 22/Feb/18
find I= ∫_0 ^1     (dx/((1+x)(√(1+x^2 ))))  .
findI=01dx(1+x)1+x2.
Answered by sma3l2996 last updated on 24/Feb/18
x=sinh(t)⇒dx=cosh(t)dt=(√(1+sinh^2 t))dt  dt=(dx/( (√(1+x^2 ))))  I=∫_0 ^(ln((√2)+1)) (dt/(1+sinh(t)))=∫((e^t dt)/(e^(2t) +e^t −1))  u=e^t ⇒du=e^t dt  I=∫_1 ^((√2)+1) (du/(u^2 +u−1))=∫(du/((u+(1/2))^2 −(5/4)))  I=(4/5)∫_1 ^((√2)+1) (du/(((2/( (√5)))×((2u+1)/2))^2 −1))=(4/5)∫(du/((((2u+1)/( (√5))))^2 −1))  y=((2u+1)/( (√5)))⇒du=((√5)/2)dy  I=((2(√5))/5)∫_(3/(√5)) ^((2(√2)+3)/(√5)) (dy/(y^2 −1))=((2(√5))/5)∫(dy/((y+1)(y−1)))  I=((√5)/5)∫_(3/(√5)) ^((2(√2)+3)/(√5)) ((1/(y−1))−(1/(y+1)))dy=((√5)/5)[ln∣((y−1)/(y+1))∣]_(3/(√5)) ^((2(√2)+3)/(√5))
x=sinh(t)dx=cosh(t)dt=1+sinh2tdtdt=dx1+x2I=0ln(2+1)dt1+sinh(t)=etdte2t+et1u=etdu=etdtI=12+1duu2+u1=du(u+12)254I=4512+1du(25×2u+12)21=45du(2u+15)21y=2u+15du=52dyI=2553/5(22+3)/5dyy21=255dy(y+1)(y1)I=553/5(22+3)/5(1y11y+1)dy=55[lny1y+1]3/5(22+3)/5

Leave a Reply

Your email address will not be published. Required fields are marked *