Menu Close

find-I-0-2pi-ln-x-e-i-d-and-xfromR-and-x-2-1-




Question Number 28889 by abdo imad last updated on 31/Jan/18
find  I  = ∫_0 ^(2π) ln(x−e^(iθ) )dθ    and xfromR and x^2 ≠1.
findI=02πln(xeiθ)dθandxfromRandx21.
Commented by abdo imad last updated on 02/Feb/18
let put f(x)= ∫_0 ^(2π)  ln(x −e^(iθ) )dθ we have  f^′ (x)= ∫_0 ^(2π)     (dθ/( x−e^(iθ) ))= ∫_0 ^(2π)  (dθ/(x −cosθ −isinθ))  = ∫_0 ^(2π)  ((x−cosθ +i sinθ)/((x−cosθ)^2  +sin^2 θ))dθ  =∫_0 ^(2π) ((x−cosθ)/(x^2 −2xcosθ +1))dθ +i∫_0 ^(2π)    ((sinθ)/(x^2 −2xcosθ +1))dθ  =A(x) +iB(x)  A(x)=(1/2) ∫_0 ^(2π) ((2x−2cosθ)/(x^2 −2xcosθ+1))dθ=(1/2)[ln∣x^2 −2xcosθ+1∣]_(θ=0) ^(2π)   =0  let find B(x) the ch. e^(iθ) =z give  B(x)=∫_(∣z∣=1)        (((z−z^(−1) )/(2i))/(x^2 −2x((z+z^(−1) )/2) +1))(dz/(iz))  = ∫_(∣z∣=1)     ((z−z^(−1) )/(2i( x^2 −2x((z+z^(−1) )/2)+1)iz))dz  =∫_(∣z∣=1)    ((z^(−1) −z)/(z(2x^2  −2xz −2xz^(−1) +2)))dz  = ∫_(∣z∣=1)     (((1/z)−z)/(2(x^2 z−xz^2 −x +z)))dz  =∫_(∣z∣=1)           ((1−z^2 )/(2z( −xz^2  +(1+x^2 )z −x)))dz  =∫_(∣z∣=1)      ((z^2  −1)/(2z( xz^2  −(1+x^2 )z +x)))dz let introduce the  complex function ψ(z)= ((z^2 −1)/(2z( xz^2 −(1+x^2 )z +x)))  poles ofψ?  xz^2  −(1+x^2 )z +x=0⇒Δ=(1+x^2 )^2 −4x^2   =1+2x^2  +x^4  −4x^2  =(1−x^2 )^2 ⇒z_(1 ) =((1+x^2  +∣1−x^2 ∣)/(2x)) and  z_2 =((1+x^2 −∣1−x^2 ∣)/(2x))    (x≠0)                case 1 if  ∣x∣<1     ⇒z_1 = (1/x) and z_2 =x and we have∣z_1 ∣>1and ∣z_2 ∣<1  ψ(z)=  ((z^2 −1)/(2xz(z−z_1 )(z−z_2 ))) and by residus theorem  ∫_(∣z∣=1) ψ(z)dz=2iπ(Res(ψ,0) +Res(ψ,z_2 ))  Res(ψ,0)=lim_(z→0) zψ(z)= ((−1)/(2x z_1 .z_2 ))=((−1)/(2x))  Res(ψ,z_2 )=lim_(z→z_2 )  (z−z_2 )ψ(z)= ((z_2 ^2  −1)/(2xz_2 (z_2 −z_1 )))  = ((x^2 −1)/(2x^2 (x−(1/x))))=((x^2 −1)/(2x(x^2 −1)))= (1/(2x))  ∫_(∣z∣=1) ψ(z)dz=2iπ(0)=0  case 2  if ∣x∣>1⇒ z_1 = x and z_2 =(1/x) and ∣z_1 ∣>1 and ∣z_2 ∣<1  ∫_(∣z∣=1) ψ(z)dz=2iπ( Res(ψ,0)+Res(ψ,z_2 ))  Res(ψ,0)= ((−1)/(2x )) and Res(ψ,z_2 )=((z_2 ^2  −1)/(2xz_2 (z_2 −z_1 )))  =(((1/x^2 )−1)/(2((1/x)−x)))=  ((1−x^2 )/(2x^2  ((1−x^2 )/x))) =  (1/(2x)) and ∫_(∣z∣=1) ψ(z)dz=0so  A(x)=B(x)=0⇒f^′ (x)=0 ⇒f(x)=λ  ∀ x /x^2 ≠1
letputf(x)=02πln(xeiθ)dθwehavef(x)=02πdθxeiθ=02πdθxcosθisinθ=02πxcosθ+isinθ(xcosθ)2+sin2θdθ=02πxcosθx22xcosθ+1dθ+i02πsinθx22xcosθ+1dθ=A(x)+iB(x)A(x)=1202π2x2cosθx22xcosθ+1dθ=12[lnx22xcosθ+1]θ=02π=0letfindB(x)thech.eiθ=zgiveB(x)=z∣=1zz12ix22xz+z12+1dziz=z∣=1zz12i(x22xz+z12+1)izdz=z∣=1z1zz(2x22xz2xz1+2)dz=z∣=11zz2(x2zxz2x+z)dz=z∣=11z22z(xz2+(1+x2)zx)dz=z∣=1z212z(xz2(1+x2)z+x)dzletintroducethecomplexfunctionψ(z)=z212z(xz2(1+x2)z+x)polesofψ?xz2(1+x2)z+x=0Δ=(1+x2)24x2=1+2x2+x44x2=(1x2)2z1=1+x2+1x22xandz2=1+x21x22x(x0)case1ifx∣<1z1=1xandz2=xandwehavez1∣>1andz2∣<1ψ(z)=z212xz(zz1)(zz2)andbyresidustheoremz∣=1ψ(z)dz=2iπ(Res(ψ,0)+Res(ψ,z2))Res(ψ,0)=limz0zψ(z)=12xz1.z2=12xRes(ψ,z2)=limzz2(zz2)ψ(z)=z2212xz2(z2z1)=x212x2(x1x)=x212x(x21)=12xz∣=1ψ(z)dz=2iπ(0)=0case2ifx∣>1z1=xandz2=1xandz1∣>1andz2∣<1z∣=1ψ(z)dz=2iπ(Res(ψ,0)+Res(ψ,z2))Res(ψ,0)=12xandRes(ψ,z2)=z2212xz2(z2z1)=1x212(1xx)=1x22x21x2x=12xandz∣=1ψ(z)dz=0soA(x)=B(x)=0f(x)=0f(x)=λx/x21
Commented by abdo imad last updated on 02/Feb/18
λ=f(0)=∫_0 ^(2π) ln(−e^(iθ) )dθ = ∫_0 ^(2π)  ln(e^(i(π+θ)) )dθ  =∫_0 ^(2π) i(π+θ)dθ=2iπ^2  +i[(θ^2 /2)]_0 ^(2π) =2iπ^2  +2iπ^2 =4iπ^2 .
λ=f(0)=02πln(eiθ)dθ=02πln(ei(π+θ))dθ=02πi(π+θ)dθ=2iπ2+i[θ22]02π=2iπ2+2iπ2=4iπ2.
Commented by abdo imad last updated on 02/Feb/18
if z=r e^(iθ)        ln(z)=ln(r) +iθ           −π<θ<π .and r>0
ifz=reiθln(z)=ln(r)+iθπ<θ<π.andr>0

Leave a Reply

Your email address will not be published. Required fields are marked *