Question Number 30498 by abdo imad last updated on 22/Feb/18
$${find}\:\:{I}=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:{arcsin}\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:\:. \\ $$
Answered by sma3l2996 last updated on 24/Feb/18
$${by}\:{part}\:\: \\ $$$${u}={arcsin}\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\Rightarrow{u}'=\mathrm{2}×\frac{\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }×\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }} \\ $$$${u}'=\mathrm{2}×\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }×\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\:\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{2}} }}=\mathrm{2}×\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }} \\ $$$${u}'=\frac{\mathrm{2}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${v}'=\mathrm{1}\Rightarrow{v}={x} \\ $$$${so}\:\:{I}=\left[{xarcsin}\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\right]_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} −\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\sqrt{\mathrm{3}}×\frac{\pi}{\mathrm{3}}−\left[{ln}\mid\mathrm{1}+{x}^{\mathrm{2}} \mid\right]_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \\ $$$${I}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\pi−\mathrm{2}{ln}\left(\mathrm{2}\right) \\ $$