Menu Close

find-I-0-pi-2-1-sin-cos-d-




Question Number 31073 by abdo imad last updated on 02/Mar/18
find I= ∫_0 ^(π/2)   ((1−sinθ)/(cosθ))dθ .
findI=0π21sinθcosθdθ.
Commented by prof Abdo imad last updated on 03/Mar/18
the ch.tan((θ/2))=x give  I=∫_0 ^1    ((1 −((2x)/(1+x^2 )))/((1−x^2 )/(1+x^2 ))) ((2dx)/(1+x^2 )) = 2∫_0 ^1   (((x−1)^2 )/((1−x^2 )(1+x^2 )))dx  =2 ∫_0 ^1   ((1−x)/((1+x)(1+x^2 )))dx let decompose the frsction  F(x)= ((1−x)/((1+x)(1+x^2 ))) = (a/(1+x)) +((bx +c)/(1+x^2 ))  a=lim_(x→−1) (x+1)F(x)= (2/2)=1  lim_(x→+∞) xF(x)= 0=a+b ⇒b=−a=−1 ⇒  F(x)= (1/(1+x)) +((−x+c)/(1+x^2 ))  F(0)=1= 1+c⇒c=0 soF(x)= (1/(1+x)) −(x/(1+x^2 ))⇒  I= 2∫_0 ^1   (dx/(1+x))dx  +∫_0 ^1   ((2x)/(1+x^2 ))dxp  = 2[ln∣1+x∣]_0 ^(1  )   −[ln(1+x^2 )]_0 ^1  = 2ln(2) −ln(2)⇒  I=ln(2) .
thech.tan(θ2)=xgiveI=0112x1+x21x21+x22dx1+x2=201(x1)2(1x2)(1+x2)dx=2011x(1+x)(1+x2)dxletdecomposethefrsctionF(x)=1x(1+x)(1+x2)=a1+x+bx+c1+x2a=limx1(x+1)F(x)=22=1limx+xF(x)=0=a+bb=a=1F(x)=11+x+x+c1+x2F(0)=1=1+cc=0soF(x)=11+xx1+x2I=201dx1+xdx+012x1+x2dxp=2[ln1+x]01[ln(1+x2)]01=2ln(2)ln(2)I=ln(2).
Answered by Joel578 last updated on 02/Mar/18
I = lim_(t→(π/2))  (∫_0 ^t sec x − tan x dx)     = lim_(t→(π/2))  [ln (sec x + tan x)cos x]_0 ^t      = lim_(t→(π/2))  ln ((sec t + tan t)cos t) − ln (1 + 0)     = lim_(t→(π/2))  ln ((sec t + tan t)cos t)     = lim_(t→(π/2))  ln (1 + tan t cos t) = ln (1 + lim_(t→(π/2))  tan t cos t)     = ln (1 + lim_(t→(π/2))  ((cos t)/(cot t)))     = ln (1 + lim_(t→(π/2))  ((−sin t)/(−cosec^2  t))) = ln 2
I=limtπ2(0tsecxtanxdx)=limtπ2[ln(secx+tanx)cosx]0t=limtπ2ln((sect+tant)cost)ln(1+0)=limtπ2ln((sect+tant)cost)=limtπ2ln(1+tantcost)=ln(1+limtπ2tantcost)=ln(1+limtπ2costcott)=ln(1+limtπ2sintcosec2t)=ln2

Leave a Reply

Your email address will not be published. Required fields are marked *