Menu Close

find-I-0-pi-4-ln-cosx-dx-and-J-0-pi-4-ln-sinx-dx-




Question Number 151246 by mathmax by abdo last updated on 19/Aug/21
find I=∫_0 ^(π/4) ln(cosx)dx and J=∫_0 ^(π/4) ln(sinx)dx
findI=0π4ln(cosx)dxandJ=0π4ln(sinx)dx
Answered by qaz last updated on 19/Aug/21
∫_0 ^(π/4) lnsin xdx  =(1/2)∫_0 ^(π/2) lnsin (x/2)dx  =(1/4)∫_0 ^(π/2) ln((1−cos x)/2)dx  =(1/4)∫_0 ^(π/2) ln(sin xtan (x/2))dx−(1/4)∫_0 ^(π/2) ln2dx  =−(π/8)ln2+(1/4)∫_0 ^(π/2) lntan (x/2)dx−(π/8)ln2  =−(π/4)ln2+(1/2)∫_0 ^(π/4) lntan xdx  =−(π/4)ln2+(1/2)∫_0 ^1 ((lnx)/(1+x^2 ))dx  =−(π/4)ln2+(1/2)Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(2n) lnxdx  =−(π/4)ln2+(1/2)Σ_(n=0) ^∞ (((−1)^(n+1) )/((2n+1)^2 ))  =−(π/4)ln2−(1/2)G  −−−−−−−−−−−−−−−  ∫_0 ^(π/4) lncos xdx+∫_0 ^(π/4) lnsin xdx  =∫_0 ^(π/4) ln((1/2)sin 2x)dx  =∫_0 ^(π/4) ln(1/2)dx+(1/2)∫_0 ^(π/2) lnsin xdx  =−(π/2)ln2  ⇒∫_0 ^(π/4) lncos xdx=−(π/2)ln2−(−(π/4)ln2−(1/2)G)=(1/2)G−(π/4)ln2
0π/4lnsinxdx=120π/2lnsinx2dx=140π/2ln1cosx2dx=140π/2ln(sinxtanx2)dx140π/2ln2dx=π8ln2+140π/2lntanx2dxπ8ln2=π4ln2+120π/4lntanxdx=π4ln2+1201lnx1+x2dx=π4ln2+12n=0(1)n01x2nlnxdx=π4ln2+12n=0(1)n+1(2n+1)2=π4ln212G0π/4lncosxdx+0π/4lnsinxdx=0π/4ln(12sin2x)dx=0π/4ln12dx+120π/2lnsinxdx=π2ln20π/4lncosxdx=π2ln2(π4ln212G)=12Gπ4ln2
Commented by peter frank last updated on 19/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *