Menu Close

find-I-0-pi-dx-cosx-2sinx-




Question Number 27186 by abdo imad last updated on 02/Jan/18
find I=∫_0 ^π   (dx/(cosx +2sinx)) .
findI=0πdxcosx+2sinx.
Commented by abdo imad last updated on 04/Jan/18
we do the changement  tan((x/2))=t  I= ∫_0 ^∞  (((2dt)/(1+t^2 ))/(((1−t^2 )/(1+t^2 ))+((4t)/(1+t^2 )))) = ∫_0 ^∞ ((2dt)/(−t^2 +4t +1))  = −2 ∫_0 ^∞  (dt/(t^2 −4t −1)) = −2 ∫_0 ^∞ (dt/(t^2  −4t +4 −5))  =−2∫_0 ^∞ (dt/((t−2)^2  −5))=−2∫_0 ^∞ (dt/((t−2+(√5))(t−2−(√(5)))))  = (1/( (√5)))∫_0 ^∞ ((1/(t−2+(√)5)) −(1/(t−2−(√5))))  =(1/( (√5))) [ ln/((t−2+(√5))/(t−2−(√5)))/]_0 ^∝   =(1/( (√5)))(−ln/((−2+(√5))/(−2−(√5)))/)= (1/( (√5))) ln(((2+(√5))/(−2+(√5))))  .
wedothechangementtan(x2)=tI=02dt1+t21t21+t2+4t1+t2=02dtt2+4t+1=20dtt24t1=20dtt24t+45=20dt(t2)25=20dt(t2+5)(t25)=150(1t2+51t25)=15[ln/t2+5t25/]0=15(ln/2+525/)=15ln(2+52+5).
Answered by mrW1 last updated on 03/Jan/18
I=∫_0 ^π   (dx/(cosx +2sinx))   =(1/( (√5)))∫_0 ^π   (dx/((1/( (√5)))cosx +(2/( (√5)))sinx))   =(1/( (√5)))∫_0 ^π   (dx/(sin α cosx +cos α sinx))   =(1/( (√5)))∫_0 ^π   (dx/(sin(x+α)))   ......  =(1/( (√5))) ln (9+4(√5))
I=0πdxcosx+2sinx=150πdx15cosx+25sinx=150πdxsinαcosx+cosαsinx=150πdxsin(x+α)=15ln(9+45)

Leave a Reply

Your email address will not be published. Required fields are marked *