Menu Close

find-I-a-b-0-sin-ax-sin-bx-x-2-dx-witha-gt-0-and-b-gt-0-




Question Number 79094 by mathmax by abdo last updated on 22/Jan/20
find I_(a,b)  =∫_0 ^∞   ((sin(ax)sin(bx))/x^2 )dx   witha>0 and b>0
findIa,b=0sin(ax)sin(bx)x2dxwitha>0andb>0
Answered by mind is power last updated on 23/Jan/20
2sin(ax)sin(bx)=cos((a−b)x)−cos((a+b)x)  f(z)=∫_0 ^(+∞) ((cos(zx)−1)/x^2 ) dx  z∈R  well defind  in zero  cos(zx)−1=−((z^2 x^2 )/2)+o(x^3 )  for z>1  ((∣cos(zx)−1∣)/x^2 )≤(2/x^2 ),integrabl in [1,+∞[  ∀(z,x)∈IR×R^∗ (z,x)→((cos(zx)−1)/x^2 )   ∈C_∞   C_1  is what we need  (∂/∂z)(((cos(zx)−1)/x^2 ))=−((sin(zx))/x)∈C_1 ]0,+∞[  ∫_0 ^(+∞) −((sin(zx))/x)dx <∞  ⇒f(z)∈C_1   f′(z)=∫_0 ^(+∞) (∂/∂z)(((cos(zx)−1)/x^2 ))=−∫_0 ^(+∞) ((sin(zx))/x)dx,u=zx  if z>0  =−∫_0 ^(+∞) ((sin(u))/u)du=−(π/2),z<0  =(π/2)  ⇒f′(z)=−sign(z)(π/2)  f(z)=−((zsign(z)π)/2)+c  f(0)=0⇒c=0  f(z)=((−zsign(z)π)/2)  I_(a,b) =∫_0 ^(+∞) ((sin(ax)sin(bx))/x^2 )dx  =∫_0 ^(+∞) ((cos((a−b)x)−cos((a+b)x))/(2x^2 ))dx  =∫_0 ^(+∞) ((cos((a−b)x)−1−(cos((a+b)x)−1))/(2x^2 ))dx  =(1/2)∫_0 ^(+∞) ((cos((a−b)x)−1)/x^2 )−(1/2)∫_0 ^(+∞) ((cos((a+b)x)−1)/x^2 )  =(1/2)f((a−b))−(1/2)f(a+b))=−(((a−b)sivn(a−b)π)/4)+(((a+b)sign(a+b)π)/4)  =(π/4)((a+b)sign(a+b)−(a−b)sign(a−b))
2sin(ax)sin(bx)=cos((ab)x)cos((a+b)x)f(z)=0+cos(zx)1x2dxzRwelldefindinzerocos(zx)1=z2x22+o(x3)forz>1cos(zx)1x22x2,integrablin[1,+[(z,x)IR×R(z,x)cos(zx)1x2CC1iswhatweneedz(cos(zx)1x2)=sin(zx)xC1]0,+[0+sin(zx)xdx<f(z)C1f(z)=0+z(cos(zx)1x2)=0+sin(zx)xdx,u=zxifz>0=0+sin(u)udu=π2,z<0=π2f(z)=sign(z)π2f(z)=zsign(z)π2+cf(0)=0c=0f(z)=zsign(z)π2Ia,b=0+sin(ax)sin(bx)x2dx=0+cos((ab)x)cos((a+b)x)2x2dx=0+cos((ab)x)1(cos((a+b)x)1)2x2dx=120+cos((ab)x)1x2120+cos((a+b)x)1x2=12f((ab))12f(a+b))=(ab)sivn(ab)π4+(a+b)sign(a+b)π4=π4((a+b)sign(a+b)(ab)sign(ab))
Commented by msup trace by abdo last updated on 23/Jan/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *