Menu Close

find-I-arctan-1-x-dx-and-J-actan-1-x-dx-




Question Number 55995 by maxmathsup by imad last updated on 07/Mar/19
find I =∫  arctan(1−x)dx  and J =∫ actan(1+x) dx
findI=arctan(1x)dxandJ=actan(1+x)dx
Commented by maxmathsup by imad last updated on 08/Mar/19
by psrts I =x arctan(1−x)−∫ x ((−1)/(1+(1−x)^2 ))dx  =xarctan(1−x) +∫   (x/(1+x^2 −2x+1))dx  but  ∫    (x/(x^2 −2x+2))dx   =(1/2)∫  ((2x−2+2)/(x^2 −2x+2))dx =(1/2)ln∣x^2 −2x+2∣ +∫  (dx/(x^2 −2x+2)) +c  ∫   (dx/(x^2 −2x+2))dx =∫   (dx/((x−1)^2  +1)) =_(x−1 =u)    ∫   (du/(1+u^2 )) =arctan(u) =arctan(x−1)  ⇒I = xarctan(1−x)+(1/2)ln∣x^2 −2x+2∣ +arctan(x−1) +c  =(x−1) arctan(1−x) +ln(√(x^2 −2x+2))+c   .also   J =∫  arctan(1+x)dx =_(x=−t) − ∫ arctan(1−t)dt  =−(t−1)arctan(1−t)+ln(√(t^2 −2t +2))) +c  =(x+1)arctan(1+x)+ln(√(x^2 +2x+2)) +c .
bypsrtsI=xarctan(1x)x11+(1x)2dx=xarctan(1x)+x1+x22x+1dxbutxx22x+2dx=122x2+2x22x+2dx=12lnx22x+2+dxx22x+2+cdxx22x+2dx=dx(x1)2+1=x1=udu1+u2=arctan(u)=arctan(x1)I=xarctan(1x)+12lnx22x+2+arctan(x1)+c=(x1)arctan(1x)+lnx22x+2+c.alsoJ=arctan(1+x)dx=x=tarctan(1t)dt=(t1)arctan(1t)+lnt22t+2)+c=(x+1)arctan(1+x)+lnx2+2x+2+c.
Answered by MJS last updated on 08/Mar/19
they are standard?!  arctan (1−x) =−arctan (x−1)  ∫arctan (x±a) dx=  =(x±a)arctan (x±a)−(1/2)ln ((x±a)^2 +1) +C
theyarestandard?!arctan(1x)=arctan(x1)arctan(x±a)dx==(x±a)arctan(x±a)12ln((x±a)2+1)+C

Leave a Reply

Your email address will not be published. Required fields are marked *