Menu Close

find-I-D-ln-1-x-y-dxdy-with-D-x-y-R-2-x-y-1-and-x-0-and-y-0-




Question Number 27690 by abdo imad last updated on 12/Jan/18
find   I=  ∫∫_D ln(1+x+y)dxdy  with  D= {(x,y)∈R^2    /  x+y≤1 and x≥0 and y≥0 }.
findI=Dln(1+x+y)dxdywithD={(x,y)R2/x+y1andx0andy0}.
Commented by abdo imad last updated on 14/Jan/18
0≤x≤1−y   and  0≤y≤1 so    I = ∫_0 ^1 (  ∫_0 ^(1−y)  ln(1+x+y)dx)dy but the ch. 1+x+y =t give   ∫_0 ^(1−y)  ln(1+x +y)dx= ∫_(1+y) ^2 lnt dt = [tlnt −t]_(1+y) ^2   = 2ln2 −2 −(1+y)ln(1+y) +1+y  =2ln2 −1 +y −(1+y)ln(1+y)  I= ∫_0 ^1 (2ln2−1)dy +∫_0 ^1 ydy −∫_0 ^1 (1+y)ln(1+y)dy  I= 2ln2 −(1/2) − ∫_0 ^1 (1+y)ln(1+y)dy the ch.1+y=t give  ∫_0 ^1  (1+y)ln(1+y)dy= ∫_1 ^2 tln(t)dt  =[ (t^2 /2) lnt]_1 ^2   −∫_1 ^2  (t/2)dt  = 2ln2 −(1/2)[(t^2 /2)]_1 ^2  =2ln2−(1/2)((3/2))  = 2ln2 −(3/4)  I= 2ln2 −(1/2)  −2ln2 +(3/4)= (1/4) .
0x1yand0y1soI=01(01yln(1+x+y)dx)dybutthech.1+x+y=tgive01yln(1+x+y)dx=1+y2lntdt=[tlntt]1+y2=2ln22(1+y)ln(1+y)+1+y=2ln21+y(1+y)ln(1+y)I=01(2ln21)dy+01ydy01(1+y)ln(1+y)dyI=2ln21201(1+y)ln(1+y)dythech.1+y=tgive01(1+y)ln(1+y)dy=12tln(t)dt=[t22lnt]1212t2dt=2ln212[t22]12=2ln212(32)=2ln234I=2ln2122ln2+34=14.

Leave a Reply

Your email address will not be published. Required fields are marked *