find-I-D-ln-1-x-y-dxdy-with-D-x-y-R-2-x-y-1-and-x-0-and-y-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27690 by abdo imad last updated on 12/Jan/18 findI=∫∫Dln(1+x+y)dxdywithD={(x,y)∈R2/x+y⩽1andx⩾0andy⩾0}. Commented by abdo imad last updated on 14/Jan/18 0⩽x⩽1−yand0⩽y⩽1soI=∫01(∫01−yln(1+x+y)dx)dybutthech.1+x+y=tgive∫01−yln(1+x+y)dx=∫1+y2lntdt=[tlnt−t]1+y2=2ln2−2−(1+y)ln(1+y)+1+y=2ln2−1+y−(1+y)ln(1+y)I=∫01(2ln2−1)dy+∫01ydy−∫01(1+y)ln(1+y)dyI=2ln2−12−∫01(1+y)ln(1+y)dythech.1+y=tgive∫01(1+y)ln(1+y)dy=∫12tln(t)dt=[t22lnt]12−∫12t2dt=2ln2−12[t22]12=2ln2−12(32)=2ln2−34I=2ln2−12−2ln2+34=14. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Write-the-series-indicating-the-5th-term-the-5th-partial-sum-0-1-3-n-2-n-2-Next Next post: f-x-sgn-x-2-1-sgn-sin-pix-faind-lim-x-1-f-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.