Menu Close

find-I-e-arcsinx-dx-




Question Number 30508 by abdo imad last updated on 22/Feb/18
find I= ∫  e^(arcsinx) dx .
findI=earcsinxdx.
Commented by sma3l2996 last updated on 24/Feb/18
I=∫e^(arcsinx) dx  u=e^(arcsinx) ⇒u′=(e^(arcsinx) /( (√(1−x^2 ))))  v′=1⇒v=x  I=xe^(arcsinx) −∫(x/( (√(1−x^2 ))))e^(arcsinx) dx+c_1   u=e^(arcsinx) ⇒u′=(e^(arcsinx) /( (√(1−x^2 ))))  v′=(x/( (√(1−x^2 ))))⇒v=−(√(1−x^2 ))  I=xe^(arcsinx) +(√(1−x^2 ))e^(arcsinx) −∫e^(arcsinx) dx+c_2   2I=(x+(√(1−x^2 )))e^(arcsinx) +c_2   I=(1/2)(x+(√(1−x^2 )))e^(arcsinx) +C
I=earcsinxdxu=earcsinxu=earcsinx1x2v=1v=xI=xearcsinxx1x2earcsinxdx+c1u=earcsinxu=earcsinx1x2v=x1x2v=1x2I=xearcsinx+1x2earcsinxearcsinxdx+c22I=(x+1x2)earcsinx+c2I=12(x+1x2)earcsinx+C

Leave a Reply

Your email address will not be published. Required fields are marked *