Menu Close

Find-i-i-




Question Number 88678 by Cheyboy last updated on 12/Apr/20
Find   (√i)+(√(−i))
Findi+i
Commented by mr W last updated on 12/Apr/20
both definitions are used (in different  countries):  −π<Arg(z)≤π or  0≤Arg(z)<2π
bothdefinitionsareused(indifferentcountries):π<Arg(z)πor0Arg(z)<2π
Commented by mr W last updated on 12/Apr/20
(√i)+(√(−i))  =(e^((πi)/2) )^(1/2) +(e^((3πi)/2) )^(1/2)   =e^((πi)/4) +e^((3πi)/4)   =((√2)/2)+i((√2)/2)−((√2)/2)+((√2)/2)i  =(√2)i
i+i=(eπi2)12+(e3πi2)12=eπi4+e3πi4=22+i2222+22i=2i
Commented by Cheyboy last updated on 12/Apr/20
Thank your sir
Thankyoursir
Commented by Tony Lin last updated on 12/Apr/20
i=cos(π/2)+isin(π/2)  (√i)=cos(π/4)+isin(π/4)  −i=cos(−(π/2))+isin(−(π/2))  (√(−i))=cos(−(π/4))+isin(−(π/4))  (√i)+(√(−i))=cos(π/4)+cos(−(π/4))+i[sin(π/4)+sin(−(π/4))]  =(√2)
i=cosπ2+isinπ2i=cosπ4+isinπ4i=cos(π2)+isin(π2)i=cos(π4)+isin(π4)i+i=cosπ4+cos(π4)+i[sinπ4+sin(π4)]=2
Commented by ajfour last updated on 12/Apr/20
−π<Arg(z)≤π  is this true, sir?
π<Arg(z)πisthistrue,sir?
Commented by mr W last updated on 12/Apr/20
Commented by ajfour last updated on 12/Apr/20
thanks Sir.
thanksSir.
Commented by mathmax by abdo last updated on 12/Apr/20
(√i)+(√(−i))=(e^((iπ)/2) )^(1/2)  +(e^(−((iπ)/2)) )^(1/2) =e^((iπ)/4)  +e^(−((iπ)/4))  =2cos((π/4))=2×(1/( (√2)))=(√2)
i+i=(eiπ2)12+(eiπ2)12=eiπ4+eiπ4=2cos(π4)=2×12=2

Leave a Reply

Your email address will not be published. Required fields are marked *