Menu Close

find-I-n-0-1-lnx-n-dx-with-n-fromN-




Question Number 30760 by abdo imad last updated on 25/Feb/18
find  I_n = ∫_0 ^1  (lnx)^n  dx  with n fromN
findIn=01(lnx)ndxwithnfromN
Commented by abdo imad last updated on 27/Feb/18
the ch. lnx=−t give  I_n = −∫_0 ^(+∞)  (−t)^n (−e^(−t) )dt  =(−1)^n  ∫_0 ^∞  t^n e^(−t) dt =(−1)^n  A_(n )  let integrate by parts  A_n =[−t^n e^(−t) ]_0 ^∞  −∫_0 ^∞ −nt^(n−1)  e^(−t) dt =n∫_0 ^∞  t^(n−1)  e^(−t) dt  =nA_(n−1)   ⇒Π_(k=1) ^n  A_k = Π_(k=1) ^n k.Π_(k=1) ^n  A_(k−1)  ⇒  A_1 .A_2 ....A_n =n! A_0  A_1 ....A_(n−1)  ⇒A_n =n! A_0 =n! ⇒  I_n =(−1)^n n!  .
thech.lnx=tgiveIn=0+(t)n(et)dt=(1)n0tnetdt=(1)nAnletintegratebypartsAn=[tnet]00ntn1etdt=n0tn1etdt=nAn1k=1nAk=k=1nk.k=1nAk1A1.A2.An=n!A0A1.An1An=n!A0=n!In=(1)nn!.

Leave a Reply

Your email address will not be published. Required fields are marked *